SERVING NEW ENGLAND TO THE SOUTH ATLANTIC | WWW.TRIUMVIRATE.COM

May 26, 2009

Mr. Victor Alverez
US Environmental Protection Agency
RGP-NOC Processing Center
Municipal Assistance Unit
1 Congress Street, Suite 1100
Boston, MA 02114-2023

RE: Notice of Intent for Application of Remediation General Permit ATF Davidson/Arcade
355 Main Street
Northbridge (Whitinsville), MA 01588
Release Tracking Number 2-11846

Dear Mr. Alverez:

Triumvirate Environmental Inc. (TEI) on behalf of Performance Contracting, Inc. has prepared this Notice of Intent (NOI) for Application of Remediation General Permit (RGP) for the above referenced property (the Site). The purpose of this NOI is to discharge treated groundwater to an on-site stormwater catch basin during construction-related activities authorized as part of the Release Abatement Measure associated with Release Tracking Number (RTN) 2-11846. The following support documentation has been included with this NOI for Application of RGP:

- Suggested Form for NOI For the Remediation General Permit;
- USGS Locus Map;
- BioMap produced by Natural Heritage and Endangered Species Program;
- 2008 Priority Habitat and Estimated Habitat Natural Heritage and Endangered Species Program;
- Treatment System Design Schematic;
- Material Safety Data Sheet for Petroleum Hydrocarbons;
- Dilution Factor Calculation sheet; and
- Untreated groundwater analytical laboratory report.

The Site is currently occupied by Core-Mark International and operates as a light manufacturing, warehousing and distribution facility. Site construction activities are currently in process and include the expansion of the existing loading/unloading docks from the existing facility. Depth to groundwater in the construction zone is Remediation General Permit Application (5-09) 355 Main Street, Northbridge, MA Page 2 of 2

approximately 4 feet below grade; and thus, site dewatering activities have been implemented in order to facilitate the construction of the loading/unloading docks.

Groundwater is currently being extracted from the loading/unloading dock excavation and contained within 21,000-gallon fractionation (frac) tanks. It is anticipated that more than 500,000 gallons of groundwater will require on-site treatment.

For the purpose of this design, TEI anticipates pumping 75 gallons per minute before discharging to an on-site storm drainage catch basin located immediately west of the excavation. This catch basin is connected to a storm drainage equalizer line that runs through the center of the property. This equalizer line is connected to Arcade Pond and Meadow Pond, located immediately north and south of the Site, respectively. These ponds discharge into Mumford River and subsequently, to the Blackstone River.

Groundwater samples collected on May 19, 2009 revealed that the system influent will potentially contain iron and total suspended metals above effluent standards if left untreated. Concentrations of select polynuclear aromatic hydrocarbons and metals were detected below the applicable effluent limits. The anticipated treatment includes frac tanks, bag filters, and granular activated carbon.

The discharge of treated groundwater is anticipated to begin immediately following receipt of the RGP from the US EPA. Please feel free to contact me with any questions or comments at our office (800) 966-9282.

Sincerely,

Triumvirate Environmental, Inc.

Michael C. Bricher, P.G.

Senior Engineer

Attachments

cc: Mr. Neal M. Drawas, LSP, Marsh Risk Consulting, 99 High Street Boston, MA 02110 Mr. Tim Beaubien, Performance Contracting, Inc., 3030 Orange Grove, North Highlands, CA 95660

MA DEP, Division of Watershed Management, 627 Main Street, 2nd Floor, Worcester, MA 01608

Mr. Richard R. Sasseville, P.E., Northbridge Department of Public Works, Highway Division, 11 Fletcher Street, Northbridge, MA 01588

B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General site information. Please provide the	following information about the sit	6:		·				
a) Name of facility/site: Core-Mark	· 	Facility/site address: 35	5 Main Street					
Location of facility/site: longitude: 71 4' 46" latitude: 42 6' 41"	Facility SIC code(s): 1541	Street: 355 Main Stree	t					
b) Name of facility/site owner: Core-Mark		Town: Northbridge						
Email address of owner: Tim.Beaubien@pcg.com	n	State:	Zip:	County:				
Telephone no.of facility/site owner: 916-576-390	3	MA	01588	Worcester				
Fax no. of facility/site owner:			I. Federal2. State/T	ribal				
Address of owner (if different from site): Arcade	Realty Trust	3. Private ✓ 4. oth	er, if so, describe:	· 				
Street: 1 Main Street								
Town: Northbridge	State: MA	Zip: 01588	County: Worceste	Э Г				
c) Legal name of operator:	Operator tele	phone no: 800-966-9282						
Triumvirate Environmental	Operator fax	no.: 617-628-8099	Operator email: r	nbricher@triumvirate.com				
Operator contact name and title: Michael Briche	r							
Address of operator (if different from owner):	Street: 61 Inne	er Beit Road						
Town: Somerville	State: MA	Zip: 02143	County: Middlese	ex				
d) Check "yes" or "no" for the following: 1. Has a prior NPDES permit exclusion been gran. 2. Has a prior NPDES application (Form 1 & 2C) 3. Is the discharge a "new discharge" as defined by 4. For sites in Massachusetts, is the discharge cov-	ever been filed for the discharge? Ye 40 CFR 122.2? Yes No	(es No_√, if "yes,"		_ No				

•	subject to any Statecharge? Yes	te permitting or other action which is causing the	e f) Is the site/facility covered by any other EPA permit, including: 1. multi-sector storm water general permit? Y N ✓ , if Y, number:							
If "yes," please I			2. phase I or II construction storm water general permit? YN_\(\frac{1}{2}\),							
		the state of NH or MA:	if Y. number:							
2. permit or lice		,	3. individual NPDES permit? Y N √, if Y, number:							
-		: name, location, and telephone number:	4. any other water quality related permit? Y N ✓, if Y, number:							
2. Discharge i	information, Plea	se provide information about the discharge, (attacl	ing additional sheets as needed) including:							
a) Describe the	discharge activities	s for which the owner/applicant is seeking coverage	s:							
Temporary sto	rage vessels sha	li be pumped off through a treatment system.	The water shall be treated with particulate filters and carbon filtration. The							
		storm water catch basin which drains to Arc								
b) Provide the	1) Number of	2) What is the maximum and average flow not	of discharge (in cubic feet per second, ft3/s)? Max. flow 0.22							
following	discharge	Average flow 0.167 Is maximum flow a constraint of the constraint								
information	points:		ate notation if this value is a design value or estimate if not available.							
about each			The state of the s							
discharge:	1									
3) Latitude and	longitude of each	discharge within 100 feet: pt.1:long 714046 lat 426	41 ; pt.2: long lat ; pt.3: long lat ;							
			; pt.7: long. lat. ; pt.8:long. lat. ; etc.							
NA	c testing, total volu	me of the discharge (gals): 5) Is the discharge on	rge intermittent vor seasonal? Temporary system, 3 weeks max.							
			joing 165 140 7 1							
c) Expected dat	es of discharge (m	m/dd/yy): start_06/15/09 end_06/30/09								
d) Please attach	a line drawing or	flow schematic showing water flow through the fac	rility including:							
	-		and 4. discharge points and receiving waters(s).							

3. Contaminant information. In order to complete this section, the applicant will need to take a minimum of one sample of the untreated water and have it analyzed for all of the parameters listed in Appendix III. Historical data, (i.e., data taken no more than 2 years prior to the effective date of the permit) may be used if obtained pursuant to: i. Massachusetts' regulations 310 CMR 40.0000, the Massachusetts Contingency Plan ("Chapter 21E"); ii. New Hampshire's Title 50 RSA 485-A: Water Pollution and Waste Disposal or Title 50 RSA 485-C: Groundwater Protection Act; or iii. an EPA permit exclusion letter issued pursuant to 40 CFR 122.3, provided the data was analyzed with test methods that meet the requirements of this permit. Otherwise, a new sample shall be taken and analyzed.

a) Based on the analysis of the sample(s) of the untreated influent, the applicant must check the box of the sub-categories that the potential discharge falls within.

Gasoline Only	VOC Only	Primarily Metals	Urban Fill Sites 🗸	Contaminated Sumps	Mixed Contaminants	Aquifer Testing
Fuel Oils (and Other Oils) only	VOC with Other Contaminants	Petroleum with Other · Contaminants	Listed Contaminated Sites	Contaminated Dredge Condensates	Hydrostatic Testing of Pipelines/Tanks	Well Development or Rehabilitation

b) Based on the analysis of the untreated influent, the applicant must indicate whether each listed chemical is believed present or believed absent in the potential discharge. Attach additional sheets as needed.

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample	Analytical Method	Minimum Level (ML) of Test Method	Maximum daily value		Avg. daily value	
			(1 min- imum)	(e.g., grab)	Used (method #)		concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
1. Total Suspended Solids		1	1	grab	2540D	5000	62000			
2. Total Residual Chlorine	1		1	grab	4500	20	<20		-	
3. Total Petroleum Hydrocarbons		✓	1	- grab	1664A	4400	<4400			
4. Cyanide	. 🗸		1	grab	4500	5	<5			
5. Benzene	✓		1	grab	8260B	0.50	<0.50			
6. Toluene	✓		1	grab	8260B	0.75	<0.75			
7. Ethylbenzene	✓		1	grab	8260B	0.50	<0.50			
8. (m,p,o) Xylenes	1		1	grab	8260B	1.0	<1.0			
9. Total BTEX4	1		1	grab	8260B	2.75	<2.75			

⁴BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.

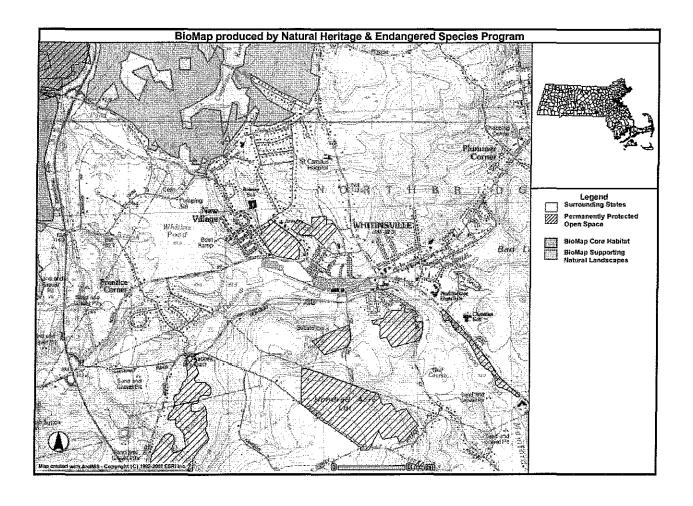
PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample (e.g.,	Analytical Method	Minimum Level (ML) of	Maximum daily	value	Avg. daily value	e ·
			(1 min- imum)	grab)	Used (method #)	Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
10. Ethylene Dibromide ⁵ (1,2- Dibromo-methane)	1		1	grab	504	0.019	<0,019			
11. Methyl-tert-Butyl Ether (MtBE)	✓		1	grab	8260	1.0	<1.0			
12. tert-Butyl Alcohol (TBA)	. 🗸		1	grab	8260	30	<30			
13. tert-Amyl Methyl Ether (TAME)	✓		1	grab	8260	2.0	<2.0			
14. Naphthalene	√	,	1	grab	8270	0.20	<0.20			Ţ
15. Carbon Tetra- chloride	1		1	grab	8260	0.50	<0.50			
16. 1,4 Dichlorobenzene	✓		1	grab	8260	2.5	<2.5			
17. 1,2 Dichlorobenzene	✓		1	grab	8260	2.5	<2.5			
18. 1,3 Dichlorobenzene	1		1	grab	8260	2.5	<2.5			
19. 1,1 Dichloroethane	✓		1	grab	8260	0.75	<0.75			
20. 1,2 Dichloroethane	✓		1	grab	8260	0.50	<0.50		<u> </u>	
21. 1,1 Dichloroethylene	✓		1	grab	8260	0.50	<0.50			
22. cis-1,2 Dichloro- ethylene	. 🗸		1	grab	8260	0.50	<0.50			
23. Dichloromethane (Methylene Chloride)	1		1	grab	8260	3.0	<3.0			
24. Tetrachloroethylene	1		1	grab	8260	0.50	<0.50			

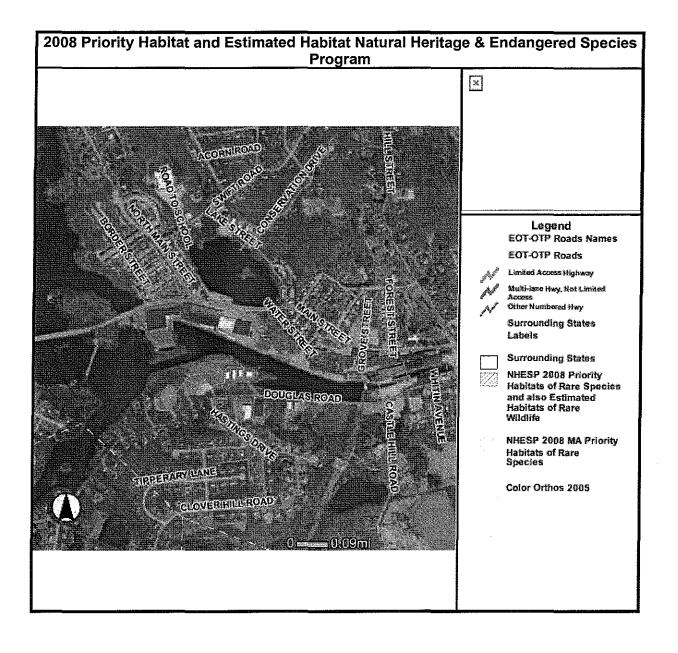
 $^{^{5}\}mathrm{EDB}$ is a groundwater contaminant at fuel spill and pesticide application sites in New England.

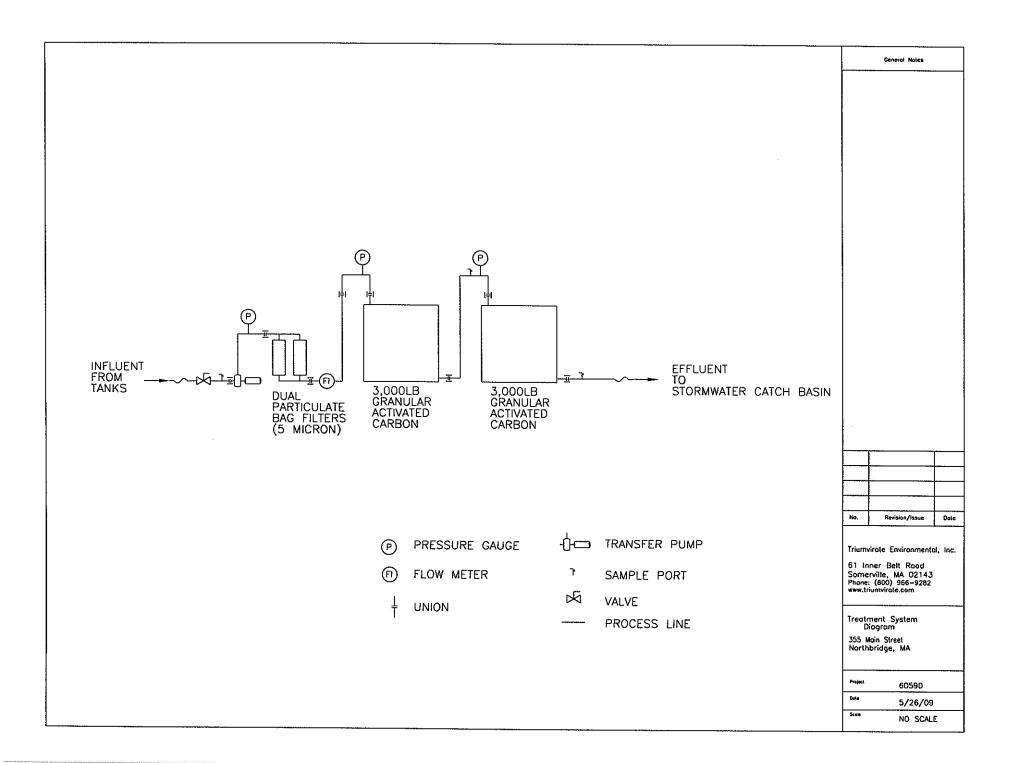
PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample (e.g.,	Analytical Method Used	Minimum Level (ML) of Test	Maximum daily	value	Avg. daily Valu	ie
			(1 min- imum)	grab)	(ruethod #)	Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
25. 1,1,1 Trichloroethane	√		1	grab	8260	0.50	<0.50			
26. 1,1,2 Trichloroethane	✓		1	grab	8260	0.75	<0.75			
27. Trichloroethylene	1		1	grab	8260	0.50	<0.50		-	
28. Vinyl Chloride	✓		1	grab	8260	1.0	<1.0			
29. Acetone	1		1	grab	8260	5.0	<5.0			
30. 1,4 Dioxane	√		1	grab	8260	250	<250			
31. Total Phenols	1	·.	1	grab	8260	30	<30			
32. Pentachlorophenol	✓		1	grab	8260	0.80	<0.80			
33. Total Phthalates ⁶ (Phthalate esthers)	✓		1	grab	3510C	0.50	<0.50			
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]	1		1	grab	3510C	0.50	<0.50			
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)	✓		1	grab	8270	0.20	<0.20			
a. Benzo(a) Anthracene	1		1	grab	8270	0.20	<0.20			
b. Benzo(a) Ругепе	1		1	grab	8270	0.20	<0.20			
c. Benzo(b)Fluoranthene	1		1	grab	8270	0.20	<0.20			
d. Benzo(k) Fluoranthene	1		1	grab	8270	0.20	<0.20			
e. Chrysene	1	-	1	grab	8270	0.20	<0.20			

⁶The sum of individual phthalate compounds.

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample (e.g.,	Analytical Method Used	Minimum Level (ML) of	Maximum daily	value	Average daily v	alue
			(1 min- imum)	grab)	(method #)	Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
f. Dibenzo(2,h) anthracene	✓		1	grab	8270	0.20	<0.20			
g. Indeno(1,2,3-cd) Pyrene	✓		1	grab	8270	0.20	<0.20			
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)		✓	1	grab	8270	0,20	0.83			
h. Acenaphthene		1	1	grab	8270	0.20	0.25			
i. Acenaphthylene	√ .		1 .	grab	8270	0.20	<0.20			
j. Anthracene	√		1	grab	8270	0.20	<0.20			
k. Benzo(ghi) Perylene	✓		1	grab	8270	0.20	<0.20		,	
l. Fluoranthene		1	1	grab	8270	0.20	0.29			
m. Fluorene	1		1	grab	8270	0.20	<0.20			
n. Naphthalene-	1		1	grab	8270	0.20	<0.20			
o. Phenanthrene	√		1	grab	8270	0.20	<0.20			
р. Ругепе		V	1	grab	8270	0.20	0.29			
37. Total Polychlorinated Biphenyls (PCBs)	1	}	1	grab	3665A	0.263	<0.263			-
38. Antimony	V		1	grab	3005A	0.50	<0.50			
39. Arsenic		1	1	grab	3005A	0.50	1.9			
40. Cadmium	√		. 1	grab	3005A	0.20	<0.20			
41. Chromium III	1		1	grab	30,3500	10	<10			
42. Chromium VI	1		1	grab	30,3500	10	<10			


PARAMETER	Believe Absent	Believe Present	Present Samples S	Type of Sample (e.g.,	Analytical Method	Minimum Level (MIL) of	Maximum daily value		Avg. daily value	
				grab)	Used (method #)	Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
43. Copper	✓.		1	grab	3005A	2.0	<2.0			
44. Lead		✓	1	grab	3005A	0.50	0.6			
45. Mercury	✓		1	grab	3005A	. 0.20	<0.20			
46. Nickel		1	1	grab	3005A	0.50	3.0			
47. Selenium	1 1		1	grab	3005A	1.0	<1.0			
48. Silver	✓		1	grab	3005A	0.4	<0.4			
49. Zinc		1	1 .	grab	3005A	10	12.1		-	
50. Iron		✓	1	grab	3005A	50	4000			
Other (describe):				·						


c) For discharges where metals are believed present, please fill out the following:


Step 1: Do any of the metals in the influent have a reasonable potential to exceed the effluent limits in Appendix III (i.e., the limits set at zero to five dilutions)? YN	If yes, which metals?
Step 2: For any metals which have reasonable potential to exceed the Appendix III limits, calculate the dilution factor (DF) using the formula in Part I.A.3.c) (step 2) of the NOI instructions or as determined by the State prior to the submission of this NOI. What is the dilution factor for applicable metals? Metals: Iron DF: 64.18	Look up the limit calculated at the corresponding dilution factor in Appendix IV. Do any of the metals in the influent have the potential to exceed the corresponding effluent limits in Appendix IV (i.e., is the influent concentration above the limit set at the calculated dilution factor)? YN If "Yes," list which metals:

. Treatment system informa	tion. Please des	cribe the treatmen	nt syst	em using separa	te sheets as necessar	y, including:			
a) A description of the treatm	ent system, incl	uding a schematic	of the	proposed or ex	isting treatment syste	em:			
b) Identify each applicable	Frac. tank 🗸	Air stripper		Oil/water sepa	arator	Equalization tanks	Bag filter ✓	<i>r</i> .	GAC filter ✓
treatment unit (check all that apply):	Chlorination	Dechlorinatio	n	Other (please	describe):				
c) Proposed average and ma Average flow rate of discharg		tes (gallons per m Maximum flow r				w rate(s) (gallons per sign flow rate of treate			system:
d) A description of chemical	additives being	used or planned to	o be us	sed (attach MSD	S sheets): See atta	ched MSDS			
5. Receiving surface water(s)). Please provid	e information abo	ut the	receiving water((s), using separate sh	eets as necessary:			
a) Identify the discharge path	way:	Direct	Witl	hin facility	Storm drain	River/brook ✓	Wetlands	o	ther (describe):
b) Provide a narrative descrip Treated groundwater will be							d ultimately to the B	3lack	kstone River.
 c) Attach a detailed map(s) it 1. For multiple discharges, n 2. For indirect dischargers, it The map should also include mapping), such as surface w 	umber the disch ndicate the locat the location and	arges sequentially ion of the dischar I distance to the n	ge to t gearest	he indirect conv sanitary sewer a	eyance and the disch	_	eptors (based on USG	S toj	pographical
d) Provide the state water qu	ality classificati	on of the receivin	g wate	r_Class B	•				'
e) Provide the reported or ca Please attach any calculation			-				cfs		
f) Is the receiving water a list Is there a TMDL? Yes		r quality impaired , for which polluta			s No_✓ If ye	s, for which pollutant((s)?		

a) Are any listed threatened or endangered species, or designated critical habitat, in proximity to the discharge? YesNo
b) Are any historic properties listed or eligible for listing on the National Register of Historic Places located on the facility or site or in proximity to the discharge? Yes No ✓ Have any state or tribal historic preservation officer been consulted in this determination (Massachusetts only)? Yes No ✓
7. Supplemental information. :
Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permit.
8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification: I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.
Facility/Site Name: Corc-MARK FACILITY
Operator signature: Mulau Biu
Title: SR. ENGINEER, TRIUMVIRATE ENVIRONMENTAL
Date: 5-26-2009

MATERIAL SAFETY DATA SHEET

No. 2 Fuel Oil

MSDS No. 0088

CHEMICAL PRODUCT and COMPANY INFORMATION 1.

(rev. Jan-98)

Amerada Hess Corporation

1 Hess Plaza

Woodbridge, NJ 07095-0961

EMERGENCY TELEPHONE NUMBER (24 hrs): CHEMTREC (800) 424-9300 COMPANY CONTACT (business hours): Corporate Safety (732) 750-6000

SYNONYMS: #2 Heating Oil; 2 Oil; Off-road Diesel Fuel

See Section 16 for abbreviations and acronyms.

2. **COMPOSITION and INFORMATION ON INGREDIENTS**

(rev. Sep-98)

CONCENTRATION

INGREDIENT NAME #2 Fuel Oil

EXPOSURE LIMITS

PERCENT BY WEIGHT 100

ACGIH TLV-TWA:

OSHA PEL-TWA: 5 mg/m3 as mineral oil mist 1997 NOIC - 100 mg/m3, skin, A3

CAS NUMBER: 68476-30-2

10 ppm OSHA PEL-TWA:

Typically 0.1

Naphthalene CAS NUMBER: 91-20-3

ACGIH TLV-TWA/STEL: 10 / 15 ppm, A4

A complex combination of hydrocarbons with carbon numbers in the range C9 and higher produced from the distillation of petroleum crude oil.

HAZARDS IDENTIFICATION (rev. Jan-98; Tox-98)

EMERGENCY OVERVIEW CAUTION!

OSHA/NFPA COMBUSTIBLE LIQUID - SLIGHT TO MODERATE IRRITANT - EFFECTS CENTRAL **NERVOUS SYSTEM - HARMFUL OR FATAL IF SWALLOWED**

Moderate fire hazard. Avoid breathing vapors or mists. May cause dizziness and drowsiness. May cause moderate eye irritation and skin irritation. Long-term, repeated exposure may cause skin cancer.

If ingested, do NOT induce vomiting, as this may cause chemical pneumonia (fluid in the lungs).

EYES

Contact with eyes may cause mild irritation.

Practically non-toxic if absorbed following acute (single) exposure. May cause skin irritation with prolonged or repeated contact. Liquid may be absorbed through the skin in toxic amounts if large areas of skin are repeatedly exposed.

INGESTION

The major health threat of ingestion occurs from the danger of aspiration (breathing) of liquid drops into the lungs, particularly from vomiting. Aspiration may result in chemical pneumonia (fluid in the lungs), severe lung damage, respiratory failure and even death.

Ingestion may cause gastrointestinal disturbances, including irritation, nausea, vomiting and diarrhea, and central nervous system (brain) effects similar to alcohol intoxication. In severe cases, tremors, convulsions, loss of consciousness, coma, respiratory arrest, and death may occur.

INHALATION

Excessive exposure may cause irritations to the nose, throat, lungs and respiratory tract. Central nervous system (brain) effects may include headache, dizziness, loss of balance and coordination, unconsciousness, coma, respiratory failure, and death.

Revision Date: 02/28/01 Page 1 of 7

MATERIAL SAFETY DATA SHEET

No. 2 Fuel Oil

MSDS No. 0088

WARNING: the burning of any hydrocarbon as a fuel in an area without adequate ventilation may result in hazardous levels of combustion products, including carbon monoxide, and inadequate oxygen levels, which may cause unconsciousness, suffocation, and death.

CHRONIC EFFECTS and CARCINOGENICITY

Similar products have produced skin cancer and systemic toxicity in laboratory animals following repeated applications. The significance of these results to human exposures has not been determined - see Section 11Toxicological Information.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE

Irritation from skin exposure may aggravate existing open wounds, skin disorders, and dermatitis (rash).

4. FIRST AID MEASURES

(rev. Jan-98; Tox-98)

EYES

In case of contact with eyes, immediately flush with clean, low-pressure water for at least 15 min. Hold eyelids open to ensure adequate flushing. Seek medical attention.

SKIN

Remove contaminated clothing. Wash contaminated areas thoroughly with soap and water or with waterless hand cleanser. Obtain medical attention if irritation or redness develops.

INGESTION

DO NOT INDUCE VOMITING. Do not give liquids. Obtain immediate medical attention. If spontaneous vomiting occurs, lean victim forward to reduce the risk of aspiration. Monitor for breathing difficulties. Small amounts of material which enter the mouth should be rinsed out until the taste is dissipated.

INHALATION

Remove person to fresh air. If person is not breathing, provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

5. FIRE FIGHTING MEASURES (rev. Sep-94)

FLAMMABLE PROPERTIES:

FLASH POINT: 100 °F (38 °C) minimum PMCC

AUTOIGNITION POINT: 494 °F (257 °C)

LOWER EXPLOSIVE LIMIT (%): 0.6 UPPER EXPLOSIVE LIMIT (%): 7.5

FIRE AND EXPLOSION HAZARDS

OSHA and NFPA Class 2 COMBUSTIBLE LIQUID (see Section 14 for transportation classification). Vapors may be ignited rapidly when exposed to heat, spark, open flame or other source of ignition. When mixed with air and exposed to an ignition source, flammable vapors can burn in the open or explode in confined spaces. Being heavier than air, vapors may travel long distances to an ignition source and flash back. Runoff to sewer may cause fire or explosion hazard.

EXTINGUISHING MEDIA

SMALL FIRES: Any extinguisher suitable for Class B fires, dry chemical, CO2, water spray, fire fighting foam, or Halon.

LARGE FIRES: Water spray, fog or fire fighting foam. Water may be ineffective for fighting the fire, but may be used to cool fire-exposed containers.

FIRE FIGHTING INSTRUCTIONS

Small fires in the incipient (beginning) stage may typically be extinguished using handheld portable fire extinguishers and other fire fighting equipment.

Revision Date: 02/28/01 Page 2 of 7

MATERIAL SAFETY DATA SHEET

No. 2 Fuel Oil

MSDS No. 0088

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH/MSHA- approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing.

Isolate area around container involved in fire. Cool tanks, shells, and containers exposed to fire and excessive heat with water. For massive fires the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Major fires may require withdrawal, allowing the tank to burn. Large storage tank fires typically require specially trained personnel and equipment to extinguish the fire, often including the need for properly applied fire fighting foam.

See Section 16 for the NFPA 704 Hazard Rating.

6. ACCIDENTAL RELEASE MEASURES (rev. Jan-98)

ACTIVATE FACILITY'S SPILL CONTINGENCY OR EMERGENCY RESPONSE PLAN.

Evacuate nonessential personnel and remove or secure all ignition sources. Consider wind direction; stay upwind and uphill, if possible. Evaluate the direction of product travel, diking, sewers, etc. to confirm spill areas. Spills may infiltrate subsurface soil and groundwater; professional assistance may be necessary to determine the extent of subsurface impact.

Carefully contain and stop the source of the spill, if safe to do so. Protect bodies of water by diking, absorbents, or absorbent boom, if possible. Do not flush down sewer or drainage systems, unless system is designed and permitted to handle such material. The use of fire fighting foam may be useful in certain situations to reduce vapors. The proper use of water spray may effectively disperse product vapors or the liquid itself, preventing contact with ignition sources or areas/equipment that require protection.

Take up with sand or other oil absorbing materials. Carefully shovel, scoop or sweep up into a waste container for reclamation or disposal. Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8).

7. HANDLING and STORAGE (rev. Jan-98)

HANDLING PRECAUTIONS

Handle as a combustible liquid. Keep away from heat, sparks, excessive temperatures and open flame! No smoking or open flame in storage, use or handling areas. Bond and ground containers during product transfer to reduce the possibility of static-initiated fire or explosion.

Special slow load procedures for "switch loading" must be followed to avoid the static ignition hazard that can exist when this product is loaded into tanks previously containing low flash point products (such as gasoline) - see API Publication 2003, "Protection Against Ignitions Arising Out Of Static, Lightning and Stray Currents."

STORAGE PRECAUTIONS

Keep containers closed and clearly labeled. Use approved vented storage containers. Empty product containers or vessels may contain explosive vapors. Do not pressurize, cut, heat, weld or expose such containers to sources of ignition.

Store in a well-ventilated area. This storage area should comply with NFPA 30 "Flammable and Combustible Liquid Code". Avoid storage near incompatible materials. The cleaning of tanks previously containing this product should follow API Recommended Practice (RP) 2013 "Cleaning Mobile Tanks In Flammable and Combustible Liquid Service" and API RP 2015 "Cleaning Petroleum Storage Tanks."

WORK/HYGIENIC PRACTICES

Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Do not use as a cleaning solvent or harsh abrasive skin cleaners for washing this product from exposed skin areas. Waterless hand cleaners are effective. Promptly remove contaminated clothing and launder before reuse.

Revision Date: 02/28/01 Page 3 of 7

MATERIAL SAFETY DATA SHEET

No. 2 Fuel Oil

MSDS No. 0088

Use care when laundering to prevent the formation of flammable vapors which could ignite via washer or dryer. Consider the need to discard contaminated leather shoes and gloves.

EXPOSURE CONTROLS and PERSONAL PROTECTION 8.

(rev. Jan-98)

ENGINEERING CONTROLS

Use adequate ventilation to keep vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces.

EYE/FACE PROTECTION

Safety glasses or goggles are recommended where there is a possibility of splashing or spraying.

SKIN PROTECTION

Gloves constructed of nitrile, neoprene, or PVC are recommended. Chemical protective clothing such as of E.I. DuPont TyChem®, Saranex® or equivalent recommended based on degree of exposure. Note: The resistance of specific material may vary from product to product as well as with degree of exposure. Consult manufacturer specifications for further information.

RESPIRATORY PROTECTION

A NIOSH/MSHA-approved air-purifying respirator with organic vapor cartridges or canister may be permissible under certain circumstances where airborne concentrations are or may be expected to exceed exposure limits or for odor or irritation. Protection provided by air-purifying respirators is limited. Refer to OSHA 29 CFR 1910.134, ANSI Z88.2-1992, NIOSH Respirator Decision Logic, and the manufacturer for additional guidance on respiratory protection selection.

Use a positive pressure, air-supplied respirator if there is a potential for uncontrolled release, exposure levels are not known, in oxygen-deficient atmospheres, or any other circumstance where an air-purifying respirator may not provide adequate protection.

PHYSICAL and CHEMICAL PROPERTIES

(rev. Jul-98)

APPEARANCE

Red or reddish/orange colored (dyed) liquid

Mild, petroleum distillate odor

BASIC PHYSICAL PROPERTIES

BOILING RANGE:

340 to 700 °F (171 to 371 °C)

VAPOR PRESSURE:

0.009 psia @ 70 °F (21 °C)

VAPOR DENSITY (air = 1):

> 1.0

SPECIFIC GRAVITY (H2O = 1): AP 0.87 PERCENT VOLATILES:

EVAPORATION RATE:

100 % Slow; varies with conditions

SOLUBILITY (H2O):

Negligible

STABILITY and REACTIVITY (rev. Sep-94) 10.

STABILITY: Stable. Hazardous polymerization will not occur

CONDITIONS TO AVOID and INCOMPATIBLE MATERIALS

Avoid high temperatures, open flames, sparks, welding, smoking and other ignition sources. Keep away from strong oxidizers; Viton ®; Fluorel ®

HAZARDOUS DECOMPOSITION PRODUCTS

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

Page 4 of 7 Revision Date: 02/28/01

MATERIAL SAFETY DATA SHEET

No. 2 Fuel Oil

MSDS No. 0088

11. TOXICOLOGICAL PROPERTIES

(rev. Jan-98; Tox-98)

ACUTE TOXICITY

Acute Oral LD50 (rat): 14.5 ml/kg Acute Dermal LD50 (rabbit): > 5 ml/kg Guinea Pig Sensitization: negative

Primary dermal irritation: moderately irritating (Draize mean irritation score - 3.98 rabbits) Draize eye irritation: mildly irritating (Draize score, 48 hours, unwashed - 2.0 rabbits)

CHRONIC EFFECTS AND CARCINOGENICITY

Carcinogenic: IARC: NO

NTP: NO

OSHA: NO

ACGIH: 1997 NOIC: A3

Dermal carcinogenicity: positive - mice

Studies have shown that similar products produce skin tumors in laboratory animals following repeated applications without washing or removal. The significance of this finding to human exposure has not been determined. Other studies with active skin carcinogens have shown that washing the animal's skin with soap and water between applications reduced tumor formation.

This product is similar to Diesel Fuel. IARC classifies whole diesel fuel exhaust particulates as probably carcinogenic to humans (Group 2A) and NIOSH regards it as a potential cause of occupational lung cancer based on animal studies and limited evidence in humans.

MUTAGENICITY (genetic effects)

Material of similar composition has been positive in a mutagenicity study.

12. ECOLOGICAL INFORMATION

(rev. Jan-98)

Keep out of sewers, drainage areas and waterways. Report spills and releases, as applicable, under Federal and State regulations.

13. DISPOSAL CONSIDERATIONS (rev. Jan-98)

Consult federal, state and local waste regulations to determine appropriate disposal options.

14. TRANSPORTATION INFORMATION (rev. Jan-98)

PROPER SHIPPING NAME:

FUEL OIL, NO. 2

HAZARD CLASS & PACKING GROUP:

3, PG III

DOT IDENTIFICATION NUMBER:

NA 1993

DOT SHIPPING LABEL:

FLAMMABLE LIQUID

May be reclassified for transportation as a COMBUSTIBLE LIQUID under conditions of DOT 49 CFR 173.120(b)(2).

15. REGULATORY INFORMATION

(rev. Feb-01)

U.S. FEDERAL, STATE, and LOCAL REGULATORY INFORMATION

This product and its constituents listed herein are on the EPA TSCA Inventory. Any spill or uncontrolled release of this product, including any substantial threat of release, may be subject to federal, state and/or local reporting requirements. This product and/or its constituents may also be subject to other regulations at the state and/or local level. Consult those regulations applicable to your facility/operation.

CLEAN WATER ACT (OIL SPILLS)

Any spill or release of this product to "navigable waters" (essentially any surface water, including certain wetlands) or adjoining shorelines sufficient to cause a visible sheen or deposit of a sludge or emulsion must be reported immediately to the National Response Center (1-800-424-8802) or, if not practical, the U.S. Coast Guard with follow-up to the National Response Center, as required by U.S. Federal Law. Also contact appropriate state and local regulatory agencies as required.

Revision Date: 02/28/01 Page 5 of 7

MATERIAL SAFETY DATA SHEET

No. 2 Fuel Oil

MSDS No. 0088

CERCLA SECTION 103 and SARA SECTION 304 (RELEASE TO THE ENVIRONMENT)

The CERCLA definition of hazardous substances contains a "petroleum exclusion" clause which exempts crude oil, refined, and unrefined petroleum products and any indigenous components of such. However, other federal reporting requirements (e.g., SARA Section 304 as well as the Clean Water Act if the spill occurs on navigable waters) may still apply.

SARA SECTION 311/312 - HAZARD CLASSES

ACUTE HEALTH CHRONIC HEALTH FIRE SUDDEN RELEASE OF PRESSURE REACTIVE X X -- -- ---

SARA SECTION 313 - SUPPLIER NOTIFICATION

This product may contain listed chemicals below the *de minimis* levels which therefore are not subject to the supplier notification requirements of Section 313 of the Emergency Planning and Community Right-To-Know Act (EPCRA) of 1986 and of 40 CFR 372. If you may be required to report releases of chemicals listed in 40 CFR 372.28, you may contact Amerada Hess Corporate Safety if you require additional information regarding this product.

CANADIAN REGULATORY INFORMATION (WHMIS)

Class B, Division 3(Combustible Liquid); Class D, Division 2, Subdivision B (Toxic by other means)

16. OTHER INFORMAT	ION (rev. Fe	b-01)		
NFPA® HAZARD RATING	HEALTH:	0	Negligible	
	FIRE:	2	Moderate	
	REACTIVITY:	0	Negligible	
HMIS® HAZARD RATING	HEALTH:	1 *	Slight	
	FIRE:	2	Moderate	
	REACTIVITY:	0	Negligible	
			* Chronic	
A				

SUPERSEDES MSDS DATED:

<u>:D:</u> 09/03/98

ABBREVIATIONS:

AP = Approximately < = Less than > = Greater than N/A = Not Applicable N/D = Not Determined ppm = parts per million

ACRONYMS:

ACGIH	American Conference of Governmental Industrial Hygienists	NFPA	National Fire Protection Association (617) 770-3000
AIHA	American Industrial Hygiene Association	NIOSH	National Institute of Occupational Safety
ANSI	American National Standards Institute (212)		and Health
	642-4900	NOIC	Notice of Intended Change (proposed
API	American Petroleum Institute		change to ACGIH TLV)
	(202) 682-8000	NTP	National Toxicology Program
CERCLA	Comprehensive Emergency Response,	OPA	Oil Pollution Act of 1990
	Compensation, and Liability Act	OSHA	U.S. Occupational Safety & Health
DOT	U.S. Department of Transportation		Administration
	[General info: (800) 467-4922]	PEL	Permissible Exposure Limit (OSHA)
EPA	U.S. Environmental Protection Agency	RCRA	Resource Conservation and Recovery
HMIS	Hazardous Materials Information System		Act
IARC	International Agency For Research On	REL	Recommended Exposure Limit (NIOSH)
	Cancer	SARA	Superfund Amendments and
MSHA	Mine Safety and Health Administration		Reauthorization Act of 1986 Title III
	-	SCBA	Self-Contained Breathing Apparatus

Revision Date: 02/28/01 Page 6 of 7

MATERIAL SAFETY DATA SHEET

No. 2 Fuel Oil

STEL

MSDS No. 0088

SPCC Spill Prevention, Control, and

Countermeasures

Short-Term Exposure Limit (generally 15

minutes)

TLV Threshold Limit Value (ACGIH)

TSCA Toxic Substances Control Act

TWA Time Weighted Average (8 hr.)

WEEL Workplace Environmental Exposure

Level (AIHA)

WHMIS Canadian Workplace Hazardous

Materials Information System

DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES

Information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Revision Date: 02/28/01 Page 7 of 7

Return to MSDS List, Previous MSDS, Next MSDS

MATERIAL SAFETY DATA SHEET

SECTION 1. Product and Company Identification MINERAL OIL

Product Code: HH-MINERAL OIL

Product Name: MINERAL OIL Chemical Family: Compound

Manufacturer Name and Telephone Dates: Address: **Numbers:**

Date Created: Distributed by: CHEMTREC (800)424-9300 10/04/1994

District of Farnam Companies, Inc. (202)483-0414 Revision: 06/26/2007 Columbia

Farnam Companies, (800)234-2269

301 West Osborn Road Printed: 06/29/2007

Phoenix, AZ.

Additional Identity Information

77601

SECTION 2. Composition/Information on Ingredients MINERAL OIL

	Hazardous Components (Chemical Name)	CAS#	Concentration	
1.	MINERAL OIL USP	8042-47-5	90.0 -100.0 %	
	OSHA PEL	ACGIH TLV		
1.	No data.	No data.		

SECTION 3. Hazards Identification MINERAL OIL

Emergency Overview

No data available.

Route(s) of Entry: Inhalation? No, Skin? No, Eyes? No, Ingestion? Yes

Potential Health Effects (Acute and Chronic)

Under Manufacturing Conditions: On rare occasions, prolonged and repeated exposure to oil mist poses a risk of pulmonary disease such as chronic lung inflammation. This condition is usually asymptomatic as a result of repeated small aspirations. Shortness of breath and cough are the most common symptoms. Aspiration may lead to chemical pneumonitis which is characterized by pulmonary edema and hemorrage, and may be fatal. Signs of lung involvement include increased respiration rate, increased heart rate, and a bluish discoloration of the skin. Coughing, choking, and gagging are often noted at the time of aspiration. Gastrointestinal discomfort may develop, followed by vomiting, with a further risk of aspiration.

Carcinogenicity: NTP? No, IARC Monographs? No, OSHA Regulated? No

Carcinogenicity/Other Information

No data available.

Signs and Symptoms Of Exposure

May cause slight eye irritation

Medical Conditions Generally Aggravated By Exposure

none known

SECTION 4. First Aid Measures MINERAL OIL

Emergency and First Aid Procedures

IF INGESTED: Do NOT induce vomiting because of aspiration hazard. If victim is conscious, give 1 to 3 glasses of water or milk and contact physician or Poison Control Center. May act as laxative. IF INHALED: Remove to fresh air. Administer respiration if indicated. If unconscious, seek medical attention.

IF IN EYES: Immediately flush with large amounts of water and continue flushing for 15 minutes. If material is hot, treat for thermal burns and take patient to hospital immediately.

IF ON SKIN: Remove contaminted clothing. If material is hot, submerge injured area in cold water. If patient is severely burned, remove to a hospital immediately.

Note to Physician

No data available.

SECTION 5. Fire Fighting Measures MINERAL OIL

Flash Pt: 400.00 F Method Used: TCC Explosive Limits: LEL: NE UEL: NE

Autoignition Pt: N.A. Extinguishing Media dry chemical, foam, water spray, or carbon dioxide

Fire Fighting Instructions

Water may be ineffective but can be used to cool containers exposed to heat or flame. Caution should be exercised when using water or foam as frothing may occur, expecially if sprayed into containers of hot, burning liquid. Water runoff can cause environmental damage. Dike and collect water used to fight fire.

Flammable Properties and Hazards

Dense smoke may be generated while burning. Carbon monoxide, carbon dioxide and other oxides may be generated as products of combustion.

Hazardous Combustion Products

No data available.

SECTION 6. Accidental Release Measures MINERAL OIL

Steps To Be Taken In Case Material Is Released Or Spilled

Contain spill immediately. Do not allow spill to enter sewers or watercourses. Remove all sources of ignition. Absorb with appropriate inert material such as sand, clay, etc.. Large spills may be picked up using vacuum pumps, shovels, buckets, or other means and placed in drums or other suitable containers.

SECTION 7. Handling and Storage MINERAL OIL

Hazard Label Information:

Good general ventilation should be su Facilities storing or utilizing this

Precautions To Be Taken in Handling

Do not transfer to unmarked containers. Store in closed containers away from heat, sparks, open flame, or oxidizing materials. Flammable and combustible liquids.

Precautions To Be Taken in Storing

No data available.

Other Precautions

KEEP OUT OF REACH OF CHILDREN

SECTION 8. Exposure Controls/Personal Protection MINERAL OIL

Respiratory Equipment (Specify Type)

none under normal use, NIOSH cert. OVR w/dust & mist filter

Eve Protection

Chemical goggles

Protective Gloves

Impervious gloves

Other Protective Clothing

Clothes to prevent skin contact

Engineering Controls (Ventilation etc.)

Local Exhaust: sufficient

Special:

Mechanical (Gen):

Other:

Work/Hygienic/Maintenance Practices

Wash hands before eating, smoking or using restroom.

SECTION 9. Physical and Chemical Properties MINERAL OIL

Solubility Notes

Negligible

Physical States: [] Gas, [X] Liquid, [] Solid

Boiling Point: 740.00 F Melting Point: N.A.

Specific Gravity (Water = 1): 0.840000 at 77.0 F

Density:

Vapor Pressure (vs. Air or mm Hg):

N.A.

Vapor Density (vs. Air = 1):

> AIR

Evaporation Rate (vs Butyl Acetate=1): N.A. Solubility in Water: N.A. Percent Volatile: N.A.

Saturated Vapor Concentration: N.A. No data.

Viscosity: No data.

Physical Physics of the Physic

Appearance and Odor Clear, light colored liquid

SECTION 10. Stability and Reactivity MINERAL OIL

Stability: Unstable [] Stable [X] **Conditions To Avoid - Instability**

none known

Incompatibility - Materials To Avoid

strong oxidizing agents

Hazardous Decomposition Or Byproducts

In fire conditions, CO, CO2, and reactive hydrocarbons may be produced.

Hazardous Polymerization: Will occur [] Will not occur [X]

Conditions To Avoid - Hazardous Polymerization

will not occur

SECTION 11. Toxicological Information MINERAL OIL

No data available.

MSDS: MINERAL OIL Page 5 of 6

SECTION 12. Ecological Information MINERAL OIL

No data available.

SECTION 13. Disposal Considerations MINERAL OIL

Waste Disposal Method

Dispose of in accordance with local, State and Federal regulations.

SECTION 14. Transport Information MINERAL OIL

DOT Proper Shipping Name

No data available.

DOT Hazard Label: None **UN/NA Number:** No dat

Additional Transport Information

No data available.

SECTION 15. Regulatory Information MINERAL OIL

No data available.

SECTION 16. Other Information MINERAL OIL

Supercedes Revision 04/25/2001

The information and data herein are believed to be accurate and have been compiled from sources believed to be reliable. It is offered for your consideration, investigation and verification.

OSHA-Required Health And Safety Information!

This Material Safety Data Sheet (MSDS) was requested moments ago from Hercules Automated Fax Information System. Please forward it immediately to the person in charge of MSDS's, or retain it at the machine until claimed.

Section 1

MATERIAL SAFETY DATA SHEET # 47 Hercules Lube Oil

MATERIAL SAFETY INFORMATION SERVICE

Date Prepared: 6/18/1986

Last Reviewed: 7/29/2002

Meets OSHA 29 CFR 1910.1200

Hercules Chemical Company Inc. 111 South Street Passaic NJ 07055 Phone (800) 221-9330 Fax (800) 333-3456

Section 2 - Hazardous Ingredients/Identity Information

Hazardous Components (Specific Chemical Identity;

Common Name(s), CAS Numbers)

OSHA PEL

ACGIH TLV

Other Limits

Upper Bound Limit if SARA Reportable

This product is not considered hazardous under OSHA 29 CFR1910.1200

HMIS Hazard Rating: 010A

Section 3 - Physical/Chemical Characteristics

Boiling Point (°C):

Specific Gravity (H2O = 1):

Vapor Density (Air = 1):

Vapor Pressure

0.88

N/D

(mm Hg): N/D

N/D

Evaporation Rate:

Melting Point (° F)

(Butyl Acetate = 1)

Solubility in Water:

N/D

N/D

Not soluble

Appearance And Color:

Light Amber Liquid

Odor: Mild petroleum

Section 4 - Fire And Explosion Hazard Data

Flash Point:

Flammable Limits:

LEL:

UEL:

N/A

(COC) 410

N/D

N/A

Extinguishing Media: Water spray, dry chemical, foam or carbon dioxide.

Special Firefighting Procedures:

Use water spray to cool fire-exposed containers. If spill or leak had not ignited, use water spray to disperse the vapors and to provide protection for persons attempting to stop the leak.

Unusual Fire And Explosion Hazards:

None

Continued on Next Page

Section 5 - Reactivity Data

Stability: Stable

Conditions To Avoid: None

Incompatability

Strong oxidizing agents.

(Materials To Avoid):

Carbon monoxide, carbon dioxide, aldehydes & ketones, combustible products of

nitrogen and sulfur.

Hazardous Polymerization:

Hazardous Decomposition:

Will Not Occur

Section 6 - Health Hazard Data

Routes of Entry:

Inhalation YES/secondary

Skin YES/primary

Ingestion YES/secondary

Health Hazards:

None

Carcinogenicity:

NTP NO

IARC NO

OSHA Regulated NO

Signs And Symptoms of Exposure:

None expected other than possible minimal irritant.

Medical Conditions Generally Aggravated By Exposure:

No appreciable effect.

Emergency And First Aid Procedures:

EYE CONTACT: As with most foreign materials, should eye contact occur, flush eyes with plenty of water. SKIN

CONTACT: Wash with soap and water.

Continued on Next Page

Section 7 - Precautions For Safe Handling And Use:

Steps To Be Taken In Case Material Is Released Or Spilled:

Contain spill. Wipe up or absorb on suitable material or shovel up.

Waste Disposal Method:

Product does not have RCRA characteristics or meet the criteria of hazardous waste if discarded in its purchased form.

Precautions To Be Taken In Handling And Storing:

Minimum feasible handling temperatures should be maintained.

Other Precautions:

Periods of exposure to high temperatures should be minimized.

Section 8 - Control Measures:

Respiratory Protection:

For normal use, none required. If sprayed as a mist, use fume-mist respirator.

Ventilation: Local Exhaust Acceptable

Special N/A

Mechanical N/A

Gloves:

None required

Other: N/A

Eye Protection:

otection: Goggles

Other Protective Clothing:

None required

Work/Hygienic Practices Wash thoroughly after handling.

For Hercules Material Safety Data Sheets by fax anytime, day or night, just call 1-800-942-INFO (1-800-942-4636) from any Touch-Tone phone. Have your fax number ready. Checking the product label for the correct MSDS # will save time.

Section 1: Product and Company Identification

Manufacturer:

AMSOIL, inc.

Telephone:

925 Tower Avenue Superior, WI 54880 CHEMTREC (Spill Emergency Only): 1-800-424-9300

Information: 715-392-7101

Product Code | AWF ISO 15 | AWG ISO 22 | AWH ISO 32 | AWI ISO 46 | AWJ ISO 68 | AWK ISO 100

Section 2: Composition/Information on Ingredients

OSHA HAZARDOUS COMPONENTS (29 CFR 1910.1200)

This product is not formulated to contain ingredients that have exposure limits exceeding those established by US agencies.

*See Section 8 for exposure limits.

Section 3: Hazards Identification

POTENTIAL HEALTH EFFECTS: Minor eye, inhalation and skin irritant.

*See Section 11 for toxicological information.

Section 4: First Aid Measures

EYE:

Flush with water for 15-20 minutes. Seek medical attention if irritation develops.

SKIN:

Wash immediately with soap and water. Remove contaminated clothing and launder before reuse.

Discard shoes and leather articles saturated with the product. Obtain medical advice if irritation occurs.

INHALATION:

Remove exposed person to fresh air. If breathing is labored give oxygen. If breathing has

stopped apply artificial respiration. Get immediate medical attention.

INGESTION:

DO NOT INDUCE VOMITING. If conscious, give 2 glasses of water. If vomiting does occur,

keep head below hips to reduce risk of aspiration. Get immediate medical attention.

Section 5: Fire Fighting Measures

FLAMMABILITY PROPERTIES:

	AWF ISO 15	AWG ISO 22	AWH ISO 32	AWI ISO 46	AWJ ISO 68	AWK ISO 100
Flash Point	341°F(172°C)	345°F(174°C)	442°F(228°C)	446°F(230°C)	459°F(237°C)	475°F (246°C)

EXTINGUISHING MEDIA: Carbon dioxide, dry chemical, alcohol foam and water fog.

SPECIAL PROCEDURES: Water or foam may cause frothing. Use water to keep fire exposed surface cool.

Water spray may be used to flush spills away from exposure. Prevent runoff from

fire control or dilution from entering streams, sewers, or drinking water.

PROTECTIVE EQUIPMENT: For fires in enclosed areas, fire fighters must use self-contained breathing

apparatus.

Product Code: AW Series Hydraulic Oil

Date Issued/Revised: January 16, 2009

Supersedes: March 28, 2006

Section 6: Accidental Release Measures

Date Issued/Revised: January 16, 2009 Supersedes: March 28, 2006

Isolate spill area. Provide adequate ventilation. Wear appropriate personal protection. Recover free product for recycle and/or disposal. Add sand, earth or other suitable absorbent to spill area. Prevent entry into sewers and waterways. Check under Transportation and Labeling (DOT/CERCLA) and Other Regulator Information Section (SARA) for hazardous substances to determine regulatory reporting requirements for spill.

Section 7: Handling and Storage

HANDLING: Keep containers closed. Avoid contact with eyes, skin or clothing. Wash hands after handling. Empty

container may retain product residue which may exhibit hazards of product.

STORAGE: Keep away from heat or flame.

Section 8: Exposure Controls/Personal Protection

VENTILATION: Use adequate general or local exhaust ventilation to keep airborne concentrations below exposure

limits.

RESPIRATORY: Use a NIOSH approved respirator when necessary.

SKIN: Use Viton or Nitrile gloves to avoid prolonged or repeated skin contact.

EYE: Use splash goggles or face shield where splashing is expected or can occur.

EXPOSURE LIMITS: The Threshold Limit Value (TLV) of 5 mg/m3 is suggested for oil mist.

Section 9: Physical and Chemical Properties

	AWF	AWG	AWH	AWI	LWA	AWK	
	ISO 15	ISO 22	ISO 32	ISO 46	ISO 68	ISO 100	
Physical State	Liquid						
Boiling Point	Not Determined						
Pour Point, °C	<-60	<-60	-51°	-47°C	-45°C	(-45°C)	
Vapor Pressure	Not Determined						
Vapor Density (Air=1)	Negligible						
Evaporation Rate	Not Determined						
Solubility in Water	Negligible						
Specific Gravity (Water=1)	0.8229	0.8363	0.8408	0.8483	0.8514	0.8628	
Density, lb./gal.	6.910	6.964	7.001	7.063	7.089	7.184	
Volatility (Volume)	Negligible						
VOC	Unknown						
pH	Essentially Neutral						
Odor	Mild, Bland, Hydrocarbon Odor						
Odor Threshold	Not Determined						
Appearance	Light Straw Transparent Colored Liquid			•			
Viscosity, cSt @ 100°C	4.4	5.9	7.3	9.7	12.3	16.1	
Viscosity, cSt @ 40°C	14.8	20.7	32.0	48.0	67.3	100.8	
Viscosity Index	237	256	205	192	184	171	

Product Code: AW Series Hydraulic Oil Page 2 of 4

Date Issued/Revised: January 16, 2009 Supersedes: March 28, 2006

Section 10: Stability and Reactivity

STABILITY: Stable under moderately elevated temperatures and pressures.

INCOMPATIBILITY: Avoid contact with strong oxidants.

HAZARDOUS POLYMERIZATION: Will not occur.

HAZARDOUS DECOMPOSITION OF PRODUCT: Toxic oxides of carbon, aldehydes and other products of

incomplete combustion.

Section 11: Toxicological Information

ACUTE EXPOSURE

Eye Irritation: Moderate to strong eye irritation. Based on data from components or similar material.

Skin Irritation: Not expected to be a primary skin irritant. Based on data from components or similar

material. Prolonged or repeated skin contact as from clothing wet with material may cause dermatitis. Symptoms may include redness, edema, drying, defatting, and

cracking of the skin.

Respiratory Irritation: If material is misted or if vapors are generated from heating, exposure may cause

irritation of mucous membranes and the upper respiratory tract similar to that observed with mineral oil. Based on data from components or similar materials. Under good industrial hygiene practices where all exposure limits are observed, respiratory irritation

should not be a problem.

CHRONIC EXPOSURE

Chronic Toxicity: No data available to indicate product present at greater than 1.0% are chronic health

hazards.

Carcinogenicity: No data available to indicate product present at greater than 0.1% are a carcinogenic

hazard.

Mutagenicity: No data available to indicate product present at greater than 1.0% present a mutagenic

or genotoxic hazard.

Reproductive Toxicity: No data available to indicate product present at greater than 1.0% present a

reproductive hazard.

Teratogenicity: No data available to indicate product present at greater than 1.0% present a teratogenic

hazards.

ADDITIONAL INFORMATION

Exposure Limits: Under conditions which may generate mists, observe the OSHA PEL of 5 mg per cubic

meter.

Section 12: Ecological Information

No data available on the adverse effects of this product on the environment.

Section 13: Disposal Considerations

If this product as supplied becomes a waste, it does not meet the criteria of a hazardous waste as defined under the Resource Conservation and Recovery Act (RCRA) 40 CFR 261.

Product Code: AW Series Hydraulic Oil Page 3 of 4

Date Issued/Revised: January 16, 2009 Supersedes: March 28, 2006

Section 14: Transport Information

This product is not classified as hazardous material for DOT shipping. For further information relative to spills resulting from transportation incidents, refer to the latest DOT Emergency Response Guidebook for Hazardous Materials.

Section 15: Regulatory Information

U.S. Federal Regulations OSHA Table Z
SARA Title III
Section 302 Extremely Hazardous
Fire HazardYes
Reactive Hazard
Release of Pressure
Acute Health HazardYes
Chronic Health HazardNo
Section 313 Toxic Chemical
U.S. State Regulations California (Prop 65) Does not contain chemicals known to the state of California to cause cancer.
International Regulations WHMISAll components listed

Section 16: Other Information

The information and recommendations contained herein are, to the best of AMSOIL's knowledge and belief, accurate and reliable as of the date issued. AMSOIL makes no warranty or guarantee, expressed or implied, of their accuracy or reliability, and AMSOIL shall not be liable for any loss or damage based upon the criteria supplied by the developers of these rating systems, together with AMSOIL's interpretation of the available data.

Product Code: AW Series Hydraulic Oil

RGP NOI Dilution Calculation 355 Main Street Northbridge, MA May 26, 2009

Blackstone River Northbridge, MA

DF = (Qd + Qs)/Qd

DF= Dilution Factor

Qd= Maximum Flow rate of discharge in cubic feet per second (cfs)

Qs= Receiving water 7Q10 flow (cfs) where,

7Q10 = The minimum flow (cfs) for 7 consectuve days with a recurrence interval for 10 years

The total drainage area of Blackstone River is 139 square miles. Pursuant to MA DEP Correspondence, in cases where 7Q10 can not be easily obtained, it can be estimated with some certainty using the factor 0.1 cfs/sq/ mile of drainage area.

Therefore,

DF = (0.22 + 13.9)/0.22

DF = 64.18

ANALYTICAL REPORT

Lab Number: L0906386

Client: Triumvirate Environmental, Inc.

61 Inner Belt Road Somerville, MA 02143

ATTN: Mike Bricher

Project Name: PERFORMANCE CONTRACTING

Project Number: 60590 Report Date: 05/26/09

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

PERFORMANCE CONTRACTING

Project Number:

60590

Lab Number:

L0906386

Report Date:

05/26/09

Alpha Sample ID

Client ID

Sample Location

Collection Date/Time

L0906386-01

GROUNDWATER

225 MAIN STREET, NORTHBRIDGE

05/19/09 16:00

L0906386-02

TRIP BLANK

225 MAIN STREET, NORTHBRIDGE

05/19/09 00:00

Project Name: Project Number: PERFORMANCE CONTRACTING

60590

Lab Number:

L0906386

Report Date:

05/26/09

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

Report Submission

This report replaces the report issued on May 22, 2009. The report has been amended to include the results for Tert-Butyl Alcohol, Tertiary-Amyl-Methyl-Ether, and 1,4-Dioxane by method 8260B.

Sample Receipt

The samples were received at the laboratory above the required temperature range. The samples were transported to the laboratory in a cooler with ice and delivered directly from the sampling site.

PERFORMANCE CONTRACTING

Lab Number:

L0906386

Project Number:

60590

Report Date:

05/26/09

Case Narrative (continued)

A Trip Blank was received in the laboratory but not listed on the Chain of Custody. At the client's request, the Trip Blank was not analyzed.

The sample was received without the container for total metals analysis. An aliquot was taken from an unpreserved container and preserved appropriately.

Semivolatile Organics

The WG363533-2 LCS recovery associated with L0906386-01 was above the acceptance criteria for 2,4-Dinitrotoluene (98%); however, the associated sample was non-detect for this target compound. The results of the original analysis are reported.

Dissolved Metals

The WG363433-4 MS recovery for Iron (140%) is invalid because the sample concentration is greater than four times the spike amount added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Kin I. Wasters

Authorized Signature:

Title: Technical Director/Representative

Date: 05/26/09

ORGANICS

VOLATILES

Project Name:

PERFORMANCE CONTRACTING

Lab Number:

L0906386

Project Number:

60590

Report Date:

05/26/09

SAMPLE RESULTS

Lab ID:

L0906386-01

Date Collected:

05/19/09 16:00

Client ID:

GROUNDWATER

Date Received:

05/19/09

Sample Location:

225 MAIN STREET, NORTHBRIDGE

Matrix:

Water

Not Specified

Analytical Method:

1,8260B

Field Prep:

Analytical Date:

05/20/09 22:51

Analyst:

GK

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab				
Methylene chloride	ND		ug/l	3.0	1
1,1-Dichloroethane	ND		ug/l	0.75	1
Chloroform	ND		ug/l	0.75	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	1.8	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.75	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	2.5	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	2.5	1
Bromoform	ND		ug/l	2.0	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.75	1
Ethylbenzene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	2.5	1
Bromomethane	ND		ug/l	1.0	1
Vinyl chloride	ND		ug/l	1.0	1
Chloroethane	ND		ug/l	1.0	1
1,1-Dichloroethene	ND		ug/l	0.50	1
rans-1,2-Dichtoroethene	ND		ug/l	0.75	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	2.5	1
1,3-Dichlorobenzene	ND		ug/l	2.5	1

Project Name: PERFORMANCE CONTRACTING

Project Number: 60590

Lab Number:

L0906386

Report Date:

05/26/09

SAMPLE RESULTS

Lab ID:L0906386-01Date Collected:05/19/09 16:00Client ID:GROUNDWATERDate Received:05/19/09Sample Location:225 MAIN STREET, NORTHBRIDGEField Prep:Not Specified

Sample Location:	225 MAIN STREET, NORTHBRID	Fiel	ld Prep:	Not Specifie	
Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	GC/MS=Westborough Lab				
1,4-Dichlorobenzene	ND		ug/l	2.5	1
Methyl tert butyl ether	ND		ug/l	1.0	1
p/m-Xylene	ND		ug/l	1.0	1
o-Xylene	ND		ug/l	1.0	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Dibromomethane	ND		ug/l	5.0	1
1,4-Dichlorobutane	ND		ug/l	5.0	1
1,2,3-Trichloropropane	ND		ug/l	5.0	1
Styrene	ND		ug/l	1.0	1
Dichlorodifluoromethane	ND		ug/l	5.0	1
Acetone	ND		ug/l	5.0	1
Carbon disulfide	ND		ug/l	5.0	1
2-Butanone	ND		ug/l	5.0	1
Vinyl acetate	ND		ug/l	5.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1
2-Hexanone	ND		ug/l	5.0	1
Ethyl methacrylate	ND		ug/f	5.0	1
Acrylonitrile	ND		ug/l	5.0	1
Bromochloromethane	ND		ug/l	2.5	1
Tetrahydrofuran	ND		ug/l	10	1
2,2-Dichloropropane	ND		ug/l	2.5	1
1,2-Dibromoethane	ND		ug/l	2.0	1
1,3-Dichloropropane	ND		ug/i	2.5	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1
Bromobenzene	ND		ug/l	2.5	1
n-Butylbenzene	ND		ug/i	0.50	1
sec-Butylbenzene	ND		ug/l	0.50	1
tert-Butylbenzene	ND		ug/l	2.5	1
a-Chlorotoluene	ND		ug/l	2.5	1
p-Chlorotoluene	ND		ug/l	2.5	1
1,2-Dibromo-3-chloropropane	» ND		ug/l	2.5	1
Hexachlorobutadiene	ND		ug/l	0.50	1
Isopropylbenzene	ND	•	ug/l	0.50	1
p-Isopropyltoluene	ND		ug/l	0.50	1
Naphthalene	ND		ug/l	2.5	1
n-Propylbenzene	ND		ug/l	0.50	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	1

Project Name:

PERFORMANCE CONTRACTING

Lab Number:

L0906386

Project Number:

60590

Report Date:

05/26/09

SAMPLE RESULTS

Lab ID:

L0906386-01

Date Collected:

05/19/09 16:00

Client ID:

GROUNDWATER

Date Received:

05/19/09

Sample Location:

225 MAIN STREET, NORTHBRIDGE

Field Prep:

Not Specified

•				•	
Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS:- Westbo	rough Lab				
1,2,4-Trichlorobenzene	ND		ug/l	2.5	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	1
Ethyl ether	ND		ug/l	2.5	1
Tert-Butyl Alcohol	ND		ug/l	30	1
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	1
1,4-Dioxane	ND		ug/l	250	1

Surrogate	rogate % Recovery		Acceptance Qualifier Criteria		
1,2-Dichloroethane-d4	122		70-130		
Toluene-d8	105		70-130		
4-Bromofluorobenzene	116		70-130		
Dibromofluoromethane	104		70-130		

Project Name:

PERFORMANCE CONTRACTING

Lab Number:

L0906386

Project Number:

60590

Report Date:

05/26/09

SAMPLE RESULTS

Lab ID:

L0906386-01

Date Collected:

05/19/09 16:00

Client ID:

GROUNDWATER

Date Received:

05/19/09

Sample Location:

225 MAIN STREET, NORTHBRIDGE

Matrix:

Water

Analytical Method:

14,504.1

Field Prep:

Not Specified

Analytical Date:

05/21/09 13:41

Analyst:

JΒ

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Pesticides by GC Westborough Lab			A second of the		
1,2-Dibromoethane	ND		ug/l	0.019	1

Project Name: PERFORMANCE CONTRACTING Lab Number:

L0906386

Project Number:

60590

Report Date:

05/26/09

Method Blank Analysis Batch Quality Control

Analytical Method:

14,504.1

Analytical Date:

05/21/09 13:03

Analyst:

JΒ

Parameter	Result	Qualifier	Units	RDL	
Pesticides by GC - Westboroug	h Lab for samp	le(s):: 01 B	atch:=WG3	63415-1	
					en in de la company periode de la company de
1,2-Dibromoethane	ND		ug/l	0.020	

PERFORMANCE CONTRACTING

Lab Number:

L0906386

Project Number:

60590

Report Date:

05/26/09

Method Blank Analysis Batch Quality Control

Analytical Method:

1,8260B

Analytical Date:

05/20/09 14:45

Analyst:

GΚ

Parameter	Result	Qualifier	Units	RDL
olatile Organics by GC/MS	Westborough La	ab for sample(s).	01	Batch: WG363439-3
Methylene chloride	ND		ug/l	3.0
1,1-Dichloroethane	ND		ug/l	0.75
Chloroform	ND		ug/l	0.75
Carbon tetrachloride	ND		ug/l	0.50
1,2-Dichloropropane	ND		ug/l	1.8
Dibromochloromethane	ND		ug/l	0.50
1,1,2-Trichloroethane	ND		ug/l	0.75
Tetrachloroethene	ND		ug/I	0.50
Chlorobenzene	ND		ug/l	0.50
Trichlorofluoromethane	ND		ug/l	2.5
1,2-Dichloroethane	ND		ug/l	0.50
1,1,1-Trichloroethane	ND		ug/l	0.50
Bromodichloromethane	ND		ug/l	0.50
trans-1,3-Dichloropropene	ND		ug/l	0.50
cis-1,3-Dichloropropene	ND		ug/l	0.50
1,1-Dichloropropene	ND		ug/l	2.5
Bromoform	ND		ug/l	2.0
1,1,2,2-Tetrachloroethane	ND		ug/I	0.50
Benzene	ND		ug/l	0.50
Toluene	ND		ug/l	0.75
Ethylbenzene	ND		ug/l	0.50
Chloromethane	ND		ug/l	2.5
Bromomethane	ND		ug/l	1.0
Vinyl chloride	ND		ug/l	1.0
Chloroethane	ND		ug/I	1.0
1,1-Dichloroethene	ND		ug/l	0.50
trans-1,2-Dichloroethene	ND		ug/l	0.75
Trichloroethene	ND		ug/l	0.50
1,2-Dichlorobenzene	ND		ug/l	2.5
1,3-Dichlorobenzene	ND		ug/l	2.5
1,4-Dichlorobenzene	ND		ug/l	. 2.5

PERFORMANCE CONTRACTING

Lab Number:

L0906386

Project Number:

60590

Report Date:

05/26/09

Method Blank Analysis Batch Quality Control

Analytical Method:

1,8260B

Analytical Date:

05/20/09 14:45

Analyst:

GΚ

rameter	Result	Qualifier	Units	RDL
latile Organics by GC/MS=V	Vestborough La	ib for sample(s):=01==Ba	atch:=WG363439-3
Methyl tert butyl ether	ND		ug/l	1.0
p/m-Xylene	ND		ug/l	1.0
o-Xylene	ND		ug/l	1.0
cis-1,2-Dichloroethene	ND		ug/l	0.50
Dibromomethane	ND		ug/l	5.0
1,4-Dichlorobutane	ND	•	ug/l	5.0
1,2,3-Trichloropropane	ND	•	ug/l	5.0
Styrene	ND		ug/l	1.0
Dichlorodifluoromethane	ND		ug/l	5.0
Acetone	ND		ug/l	5.0
Carbon disulfide	ND		ug/l	5.0
2-Butanone	ND		ug/l	5.0
/inyl acetate	ND		ug/l	5.0
-Methyl-2-pentanone	ND		ug/l	5.0
2-Hexanone	ND		ug/l	5.0
thyl methacrylate	ND		ug/l	5.0
Acrylonitrile	ND		ug/l	5.0
Bromochloromethane	ND		ug/l	2.5
etrahydrofuran	ND		ug/l	10
,2-Dichloropropane	ND		ug/l	2.5
,2-Dibromoethane	ND		ug/l	2.0
,3-Dichloropropane	ND		ug/l	2.5
,1,1,2-Tetrachloroethane	ND		ug/l	0.50
Promobenzene	ND		ug/l	2.5
-Butylbenzene	ND		ug/l	0.50
ec-Butylbenzene	ND		ug/l	0.50
ert-Butylbenzene	ND		ug/l	2.5
-Chlorotoluene	ND		ug/l	2.5
-Chlorotoluene	ND		ug/l	2.5
,2-Dibromo-3-chloropropane	ND		ug/l	2.5
lexachlorobutadiene	ND		ug/l	0.50

PERFORMANCE CONTRACTING

Lab Number:

L0906386

Project Number: 60590

Report Date:

05/26/09

Method Blank Analysis Batch Quality Control

Analytical Method:

1,8260B

Analytical Date:

05/20/09 14:45

Analyst:

GK

Parameter	Result	Qualifier	Units	RDL
Volatile Organics by GC/MS-	Westborough La	ab for sample(s):=01=Ba	atch:: WG363439-3
Isopropylbenzene	ND		ug/l	0.50
p-Isopropyltoluene	ND		ug/l	0.50
Naphthalene	ND		ug/l	2.5
п-Propylbenzene	ND		ug/l	0.50
1,2,3-Trichlorobenzene	ND		ug/l	2.5
1,2,4-Trichlorobenzene	ND		ug/l	2.5
1,3,5-Trimethylbenzene	ND		ug/l	2.5
1,2,4-Trimethylbenzene	ND		ug/l	2.5
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5
Ethyl ether	ND		ug/l	2.5
Tert-Butyl Alcohol	ND		ug/l	30
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0
1,4-Dioxane	ND		ug/l	250

Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	117		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	118		70-130	
Dibromofluoromethane	104		70-130	

Lab Control Sample Analysis Batch Quality Control

Lab Number:

L0906386

Project Name: Project Number: 60590

PERFORMANCE CONTRACTING

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Pesticides by GC - Westboroug	h Lab Associated sample(s): 01	Batch: WG363415-2			
1,2-Dibromoethane			70-130	- 	20

Volatile Organics by GC/MS - Westborou	gh Lab Associated samp	e(s): 01 Batch: WG36	3439-1 WG363439		
Chlorobenzene	99	95	75-130		20
Benzene	100		76-127		20
Toluene	99	95	76-125	4	20
1,1-Dichloroethene	102	98	61-145		20
Trichloroethene	102	96 (1944)	71-120	.	20

Lab Control Sample Analysis

Batch Quality Control

Lab Number:

L0906386

Report Date:

05/26/09

Project Name: **Project Number:**

<u>Parameter</u>

60590

PERFORMANCE CONTRACTING

LCS %Recovery

LCSD %Recovery %Recovery Limits

RPD

RPD Limits

Volatile Organics by GC/MS - Westborough Lab. Associated sample(s): 01 Batch: WG363439-1 WG363439-2

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	120	113	70-130
Toluene-d8	101	102	70-130
4-Bromofluorobenzene	98	103	70-130
Dibromofluoromethane	104	106	70-130

Matrix Spike Analysis Batch Quality Control

Project Name:

PERFORMANCE CONTRACTING

Project Number:

60590

Lab Number:

L0906386

Report Date:

				MS		MSD	Recovery		
Parameter	Native Sample	MS Added	MS Found	%Recovery	MSD Found	%Recovery	Limits	RPD	RPD Limits
Pesticides by GC - Westb	orough Lab Associal	ed sample(s):	01 QC Bato	h ID: WG3634	15-3 QC Sa	imple: L090638	6-01 Client I	D: GRØ	UNDWATER
1,2-Dibromoethane	NĐ	0.241	0.188	78	- 1044	-	70-130	•	20

SEMIVOLATILES

Project Name:

PERFORMANCE CONTRACTING

Lab Number:

L0906386

Project Number:

60590

Report Date:

05/26/09

SAMPLE RESULTS

Lab ID:

L0906386-01

Date Collected:

05/19/09 16:00

Client ID:

GROUNDWATER

Date Received:

05/19/09

Sample Location:

225 MAIN STREET, NORTHBRIDGE

Field Prep:

Not Specified

Matrix:

Water

Extraction Method:

EPA 3510C

Analytical Method:

1,8270C

Extraction Date:

05/20/09 07:08

Analytical Date:

05/21/09 13:19

Analyst:

HL

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Semivolatile Organics by GC/MS-SI	M - Westborough Lab				
Acenaphthene	0.25		ug/l	0.20	1
Fluoranthene	0.29		ug/l	0.20	1
Naphthalene	ND		ug/i	0.20	1
Benzo(a)anthracene	ND		ug/l	0.20	1
Benzo(a)pyrene	ND		ug/l	0.20	1
Benzo(b)fluoranthene	ND		ug/l	0.20	1
Benzo(k)fluoranthene	ND		ug/l	0.20	1
Chrysene	ND		ug/l	0.20	1
Acenaphthylene	ND		ug/l	0.20	1
Anthracene	ND		ug/l	0.20	1
Benzo(ghi)perylene	ND		ug/l	0.20	1
Fluorene	ND		ug/l	0.20	1
Phenanthrene	ND		ug/l	0.20	1
Dibenzo(a,h)anthracene	NĎ		ug/l	0.20	1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.20	1
Pyrene	0.29		ug/l	0.20	1
Pentachlorophenol	ND		ug/l	0.80	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	43	21-120
Phenol-d6	29	10-120
Nitrobenzene-d5	65	23-120
2-Fluorobiphenyl	18	15-120
2,4,6-Tribromophenol	118	10-120
4-Terphenyl-d14	90	33-120

Project Name: PERFORMANCE CONTRACTING Lab Number:

L0906386

Project Number:

60590

Report Date:

05/26/09

SAMPLE RESULTS

Lab ID:

L0906386-01

Client ID:

GROUNDWATER

Sample Location:

225 MAIN STREET, NORTHBRIDGE

Matrix:

Water

Analytical Method: Analytical Date:

1,8270C 05/22/09 15:12

Analyst:

ΑK

Date Collected:

05/19/09 16:00

Date Received:

05/19/09

Field Prep:

Not Specified

Extraction Method:

EPA 3510C

Extraction Date:

05/22/09 07:28

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab	VIII.			
Bis(2-Ethylhexyl)phthalate	ND		ug/l	5.0	1
Butyl benzyl phthalate	ND		ug/l	5.0	1
Di-n-butylphthalate	ND		ug/l	5.0	1
Di-n-octylphthalate	ND		ug/l	5.0	1
Diethyl phthalate	ND		ug/l	5.0	1
Dimethyl phthalate	ND		ug/l	5.0	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	60		23-120	
2-Fluorobiphenyl	65		15-120	
4-Terphenyl-d14	104		33-120	

PERFORMANCE CONTRACTING

Lab Number:

L0906386

Project Number:

60590

Report Date:

05/26/09

Method Blank Analysis Batch Quality Control

Analytical Method:

1,8270C

Extraction Method: EPA 3510C

Analytical Date:

05/21/09 11:49

Extraction Date:

05/20/09 07:08

Analyst:

HL

Parameter	Result	Qualifier	Units	RDL
Semivolatile Organics by GC	/MS-SIM = Westb	orough Lab fo	r sample(s)	01 Batch: WG363130-1
Acenaphthene	ND		ug/l	0.20
2-Chloronaphthalene	ND		ug/l	0.20
Fluoranthene	ND		ug/l	0.20
Hexachlorobutadiene	ND		ug/l	0.50
Naphthalene	ND		ug/l	0.20
Benzo(a)anthracene	ND		ug/l	0.20
Benzo(a)pyrene	ND		ug/l	0.20
Benzo(b)fluoranthene	ND		ug/l	0.20
Benzo(k)fluoranthene	ND		ug/l	0.20
Chrysene	ND		ug/l	0.20
Acenaphthylene	ND		ug/l	0.20
Anthracene	ND		ug/l	0.20
Benzo(ghi)perylene	ND		ug/l	0.20
Fluorene	ND		ug/l	0.20
Phenanthrene	ND		ug/l	0.20
Dibenzo(a,h)anthracene	ND		ug/l	0.20
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.20
Pyrene	ND		ug/l	0.20
2-Methylnaphthalene	ND		ug/l	0.20
Pentachlorophenol	ND		ug/l	0.80
Hexachlorobenzene	ND		ug/l	0.80
Hexachloroethane	ND		ug/l	0.80

PERFORMANCE CONTRACTING

Lab Number:

L0906386

Project Number:

60590

Report Date:

05/26/09

Method Blank Analysis Batch Quality Control

Analytical Method:

1,8270C

Extraction Method: EPA 3510C

Analytical Date:

05/21/09 11:49

Extraction Date:

05/20/09 07:08

Analyst:

HL

Parameter Result Qualifier Units **RDL** Semivolatile Organics by GC/MS-SIM -- Westborough Lab for sample(s): 01 Batch: WG363130-1

	Acceptance					
Surrogate	%Recovery	Qualifier Criteria				
2-Fluorophenol	55	21-120				
Phenol-d6	36	10-120				
Nitrobenzene-d5	81	23-120				
2-Fluorobiphenyl	67	15-120				
2,4,6-Tribromophenol	101	10-120				
4-Terphenyl-d14	93	33-120				

PERFORMANCE CONTRACTING

Lab Number:

L0906386

Project Number:

60590

Report Date:

05/26/09

Method Blank Analysis Batch Quality Control

Analytical Method:

1,8270C

Extraction Method: EPA 3510C

Analytical Date:

05/22/09 13:39

Extraction Date:

05/22/09 07:28

Analyst:

ΑK

Parameter	Result	Qualifier	Units	RDL	
Semivolatile Organics by GC/MS	= Westborou	gh Lab for sar	mple(s):= 01	Batch:	WG363533-1
Acenaphthene	ND		ug/l	5.0	
Benzidine	ND		ug/l	50	
1,2,4-Trichlorobenzene	ND		ug/l	5.0	• •
Hexachiorobenzene	ND		ug/l	5.0	
Bis(2-chloroethyt)ether	ND		ug/l	5.0	
2-Chloronaphthalene	ND		ug/l	6.0	
1,2-Dichlorobenzene	ND		ug/l	5.0	
1,3-Dichlorobenzene	ND		ug/l	5.0	
1,4-Dichlorobenzene	ND		ug/l	5.0	
3,3'-Dichlorobenzidine	ND		ug/l	50	
2,4-Dinitrotoluene	ND		ug/l	6.0	
2,6-Dinitrotoluene	ND		ug/l	5.0	
Azobenzene	ND		ug/l	5.0	
Fluoranthene	ND		ug/l	5.0	
4-Chlorophenyl phenyl ether	ND		ug/i	5.0	
4-Bromophenyl phenyl ether	ND		ug/l	5.0	
Bis(2-chloroisopropyl)ether	ND		ug/l	5.0	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	
Hexachlorobutadiene	ND		ug/l	10	
Hexachlorocyclopentadiene	ND		ug/l	30	
Hexachloroethane	ND		ug/i	5.0	•
Isophorone	ND		ug/i	5.0	
Naphthalene	ND		ug/l	5.0	
Nitrobenzene	ND		ug/l	5.0	
NitrosoDiPhenylAmine(NDPA)/DPA	ND		ug/l	15	
Bis(2-Ethylhexyl)phthalate	ND		ug/l	5.0	
Butyl benzyl phthalate	ND		ug/l	5.0	
Di-n-butylphthalate	ND		ug/l	5.0	
Di-n-octylphthalate	ND		ug/l	5.0	
Diethyl phthalate	ND		ug/l	5.0	
Dimethyl phthalate	ND		ug/l	5.0	
					****) _A

PERFORMANCE CONTRACTING

Lab Number:

L0906386

Project Number:

60590

Report Date:

05/26/09

Method Blank Analysis Batch Quality Control

Analytical Method:

1,8270C

Extraction Method: EPA 3510C

Analytical Date:

05/22/09 13:39

Extraction Date:

05/22/09 07:28

Analyst:

ΑK

arameter	Result	Qualifier	Units	RDL	
emivolatile Organics by GC/	MS=Westborou	gh Lab for san	nple(s):=01	Batch: WG3	63533-1
Benzo(a)anthracene	ND		ug/i	5.0	
Benzo(a)pyrene	ND		ug/l	5.0	
Benzo(b)fluoranthene	ND		ug/l	5.0	
Benzo(k)fluoranthene	ND		ug/l	5.0	
Chrysene	ND		ug/l	5.0	
Acenaphthylene	ND		ug/l	5.0	
Anthracene	ND		ug/l	5.0	
Benzo(ghi)perylene	ND		ug/l	5.0	
Fluorene	ND		ug/l	5.0	
Phenanthrene	ND		ug/l	5.0	
Dibenzo(a,h)anthracene	ND		ug/l	5.0	
Indeno(1,2,3-cd)Pyrene	ND		ug/l	7.0	
Pyrene	ND		ug/l	5.0	
Aniline	ND		ug/l	20	
4-Chloroaniline	ND		ug/l	5.0	
1-Methylnaphthalene	ND		ug/l	5.0	
2-Nitroaniline	ND		ug/l	5.0	
3-Nitroaniline	ND		ug/l	5.0	
4-Nitroaniline	ND		ug/l	7.0	
Dibenzofuran	ND		ug/i	5.0	
2-Methylnaphthalene	ND		ug/l	5.0	
n-Nitrosodimethylamine	ND		ug/l	50	
2,4,6-Trichlorophenol	ND		ug/l	5.0	
P-Chloro-M-Cresol	ND		ug/l	5.0	
2-Chlorophenol	ND		ug/l	6.0	
2,4-Dichlorophenol	ND		ug/l	10	
2,4-Dimethylphenol	ND		ug/l	10	
2-Nitrophenol	ND		ug/l	20	
4-Nitrophenol	ND		ug/l	10	
2,4-Dinitrophenol	ND		ug/l	30	
4,6-Dinitro-o-cresol	ND		ug/l	20	

PERFORMANCE CONTRACTING

Lab Number:

L0906386

Project Number:

60590

Report Date:

05/26/09

Method Blank Analysis Batch Quality Control

Analytical Method:

1,8270C

05/22/09 13:39

Extraction Method: EPA 3510C

Analytical Date:

Extraction Date:

05/22/09 07:28

Analyst:

ΑK

Parameter	Result	Qualifier	Units	RDL	
Semivolatile Organics by GC/MS	S=Westborou	gh Lab for sar	mple(s):=01	Batch: V	VG363533-1
Pentachlorophenol	ND		ug/i	10	
Phenol	ND		ug/l	7.0	
2-Methylphenol	ND		ug/l	6.0	
3-Methylphenol/4-Methylphenol	ND		ug/i	6.0	
2,4,5-Trichlorophenol	ND		ug/l	5.0	
Benzoic Acid	ND		ug/l	50	
Benzyl Alcohol	ND		ug/l	10	
Carbazole	ND		ug/l	5.0	
Pyridine	ND		ug/l	50	

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	57	21-120
Phenol-d6	38	10-120
Nitrobenzene-d5	81	23-120
2-Fluorobiphenyl	75	15-120
2,4,6-Tribromophenol	94	10-120
4-Terphenyl-d14	113	33-120

Lab Control Sample Analysis Batch Quality Control

PERFORMANCE CONTRACTING

Lab Number:

L0906386

Project Number: 60590

Project Name:

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Semivolatile Organics by GC/MS-	SIM - Westborough Lab Associa	ited sample(s): 01 Ba	itch: WG363130-2 V	/G363130-3	
Acenaphthene	69	67	40-140	3	40
2-Chloronaphthalene	69	56	40-140	21	40
Fluoranthene	91	94	40-140	3,111	40
Anthracene	80		40-140	4	40
Pyrene	90	95	40-140		40
Pentachlorophenol	45	30	30-130	40	40

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria
2-Fluorophenol	53	48	21-120
Phenol-d6	36	31	10-120
Nitrobenzene-d5	81	73	23-120
2-Fluorobiphenyl	71	55	15-120
2,4,6-Tribromophenol	96	90	10-120
4-Terphenyl-d14	94	100	33-120

Lab Control Sample Analysis Batch Quality Control

PERFORMANCE CONTRACTING

Project Number: 60590

Project Name:

Lab Number:

L0906386

Report Date:

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
emivolatile Organics by GC/MS - V	vestborough Lab Associated	sample(s): 01 Batch:	WG363533-2 WG363	3533-3	
Acenaphthene		75	46-118		30
1,2,4-Trichlorobenzene	64	66	39-98	3	30
2-Chloronaphthalene		79	40-140		30
1,2-Dichlorobenzene	61	69	40-140	12	30
1,4-Dichlorobenzene	59	66	36-97		30
2,4-Dinitrotoluene			24-96	6	30
2,6-Dinitrotaluene	82	80	40-140	2)	30
Fluoranthene	106	99	40-140	7	30
4-Chlorophenyl phenyl ether	78	84	40-140		30
n-Nitrosodi-n-propylamine	72 T		41-116		30
Butyl benzyl phthalate	100	94	40-140	6	30
Anthracene	89	84	40-140	6	30
Pyrene	100	94	26-127	6	30
P-Chloro-M-Cresol		78	23-97		30
2-Chlorophenol	63	70	27-123		30
2-Nitrophenol		76	30-130		30
4-Nitrophenol	58	54	10-80		30
2,4-Dinitrophenol	59	54	30-130	9	30
Pentachlorophenol	66	58	9-103	111111111111111111111111111111111111111	30
Phenol	39	44	12-110	12	30

Lab Control Sample Analysis

Batch Quality Control

Lab Number:

L0906386

Report Date:

05/26/09

Project Name: Project Number:

Parameter

60590

PERFORMANCE CONTRACTING

LCS %Recovery LCSD %Recovery %Recovery Limits

•

RPD

RPD Limits

Semivolatile Organics by GC/MS - Westborough Lab. Associated sample(s): 01 Batch: WG363533-2 WG363533-3

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria
2-Fluorophenol	53	57	21-120
Phenol-d6	39	42	10-120
Nitrobenzene-d5	72	73	23-120
2-Fluorobiphenyl	78	78	15-120
2,4,6-Tribromophenol	107	103	10-120
4-Terphenyl-d14	108	97	33-120

PCBS

Project Name: PERFORMANCE CONTRACTING Lab Number:

L0906386

Project Number:

60590

Report Date:

05/26/09

SAMPLE RESULTS

Lab ID:

L0906386-01

Client ID:

GROUNDWATER

Sample Location:

225 MAIN STREET, NORTHBRIDGE

Matrix:

Water

Analytical Method:

5,608

Analytical Date:

05/21/09 11:41

Analyst:

JΒ

Date Collected:

05/19/09 16:00

Date Received:

05/19/09

Field Prep:

Not Specified

Extraction Method: **Extraction Date:**

EPA 3510C 05/20/09 14:27

Cleanup Method1:

EPA 3665A

Cleanup Date1:

05/21/09

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Polychlorinated Biphenyls by 0	G Westborough Lab	Arrange and the second			
Aroclor 1016	ND		ug/l	0.263	11
Aroclor 1221	ND		ug/l	0.263	1
Aroclor 1232	ND		ug/l	0.263	1
Aroclor 1242	ND		ug/l	0.263	1
Aroclor 1248	ND		ug/l	0.263	1
Aroclor 1254	ND		ug/l	0.263	1
Aroclor 1260	ND		ug/l	0.263	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	64		30-150	A
Decachlorobiphenyl	40		30-150	Α

PERFORMANCE CONTRACTING

Lab Number:

L0906386

Project Number:

60590

Report Date:

05/26/09

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

5,608

Extraction Method: EPA 3510C

Analyst:

05/21/09 10:49 JB

Extraction Date: Cleanup Method1: EPA 3665A

05/20/09 14:27

Cleanup Date1:

05/21/09

Parameter	Result	Qualifier	Units	RDL	
Polychlorinated Biphenyl	s by GCWestborou	gh Lab for sar	nple(s):=01	Batch: W	G363203-1
Aroclor 1016	ND		ug/l	0.250	
Aroclor 1221	ND		ug/l	0.250	
Aroclor 1232	ND		ug/l	0.250	
Aroclor 1242	ND		ug/l	0.250	
Aroclor 1248	ND		ug/I	0.250	
Aroclor 1254	ND		ug/l	0.250	
Aroclor 1260	ND		ug/l	0.250	

	Acceptance				
Surrogate	%Recovery	Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	66		30-150	Α	
Decachlorobiphenyl	79		30-150	Α	

Matrix Spike Analysis Batch Quality Control

Project Name:

PERFORMANCE CONTRACTING

Project Number:

60590

Lab Number:

L0906386

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Polychlorinated Biphenyls by GROUNDWATER	GC - Westborou	gh Lab Assoc	iated sample(s) 01 OC Bat	h ID: WG3632	03-3 QC Sa	ample: L09063	86-01	Client ID:
Aroclor 1016	ND	2.1	1.21	58	1100	-	40-126	-	30
Aroclor 1260	ND	2.1	1.15	55	-	-	40-127	-	30
			M	S	ŗ	VISD	Acceptan	ice	
	Surrogate		% Recovery	Qualifier	% Recovery	/ Qualifier	Criteria	1	Column
	2,4,5,6-Tetrachl	loro-m-xylene	66				30-156	0	Α
	Decachlorobiph	envl	55				30-156	0	Α

Lab Control Sample Analysis Batch Quality Control

Project Name:

Project Number:

PERFORMANCE CONTRACTING

60590

Lab Number:

L0906386

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Polychlorinated Biphenyls by GC - Wes	tborough Lab: Associated s	ample(s): 01 Batch:	WG363203-2		
Aroclor 1016	66		40-126		
Aroclor 1260	65	-	40-127		

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	78		30-150	Α
Decachlorobiphenyl	44		30-150	Α

Lab Duplicate Analysis Batch Quality Control

Project Name: PERFORMANCE CONTRACTING

Lab Number:

L0906386

Project Number: 60590

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Polychlorinated Biphenyls by GC - Westborough Lab GROUNDWATER	Associated sample(s): 01	QC Batch ID: WG3632	203-4 QC	Sample: L0906386-01	Client ID:
Aroclor 1016	ND	ND	ug/l		30
Aroclor 1221	ND	ND	ug/l	NG	30
Aroclor 1232	ND	ND	ug/l	NC NC	30
Aroclor 1242	ND	ND	ug/l	i NC	30
Aroclor 1248	ND	ND	ug/i	Nº 1	30
Aroclor 1254	ND	ND	ug/l	NC NC	30
Aroclor 1260	ND	ND	ug/l	NC	30

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	64		73		30-150	Α
Decachlorobiphenyl	40		55		30-150	Α

METALS

Project Name: PERFORMANCE CONTRACTING Lab Number:

L0906386

Project Number:

60590

Report Date:

05/26/09

SAMPLE RESULTS

Lab ID:

L0906386-01

Date Collected:

05/19/09 16:00

Client ID:

GROUNDWATER

05/19/09

Sample Location:

Zinc, Dissolved

225 MAIN STREET, NORTHBRIDGE

Date Received:

Field Prep:

05/20/09 11:30 05/21/09 14:58

EPA 3005A

1,6020

вм

Not Specified

0.0121

Matrix:	Water									
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Wes	stborough L	ab			Marie I I Propins Communication Communicatio					
Chromium, Total	0.0039		mg/l	0.0005	1	05/22/09 08:45	05/22/09 15:42	EPA 3005A	1,6020	ВМ
Dissolved Metals -	-Westboro	ugh Lab								
Antimony, Dissolved	ND		mg/l	0.0005	1	05/20/09 11:30	05/21/09 14:58	EPA 3005A	1,6020	ВМ
Arsenic, Dissolved	0.0019		mg/l	0.0005	1	05/20/09 11:30	05/21/09 14:58	EPA 3005A	1,6020	ВМ
Cadmium, Dissolved	ND		mg/l	0.0002	1	05/20/09 11:30	05/21/09 14:58	EPA 3005A	1,6020	ВМ
Chromium, Dissolved	ND		mg/l	0.0005	1	05/20/09 11:30	05/21/09 14:58	EPA 3005A	1,6020	ВМ
Copper, Dissolved	ND		mg/l	0.0020	1	05/20/09 11:30	05/21/09 14:58	EPA 3005A	1,6020	ВМ
Iron, Dissolved	4.0		mg/l	0.05	1	05/21/09 12:00	05/21/09 20:05	EPA 3005A	19,200.7	Al
Lead, Dissolved	0.0006		mg/l	0.0005	1	05/20/09 11:30	05/21/09 14:58	EPA 3005A	1,6020	вм
Mercury, Dissolved	ND		mg/l	0.0002	1	05/21/09 12:05	05/21/09 15:21	EPA 245.2	3,245.1	EZ
Nickel, Dissolved	0.003		mg/l	0.0005	1	05/20/09 11:30	05/21/09 14:58	EPA 3005A	1,6020	вм
Selenium, Dissolved	ND		mg/l	0.001	1	05/20/09 11:30	05/21/09 14:58	EPA 3005A	1,6020	BM
Silver, Dissolved	ND		mg/l	0.0004	1	05/20/09 11:30	05/21/09 14:58	EPA 3005A	1,6020	вм

0.0100

mg/l

PERFORMANCE CONTRACTING

Lab Number:

L0906386

Project Number: 60590

Report Date:

05/26/09

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Anaiyst
Dissolved Metals - We	estborough Lab for sam	iple(s); (1 Batc	h: WG363	3221-1	Santa de la Carlo de la Car		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Antimony, Dissolved	ND	mg/l	0.0005	1	05/20/09 11:30	05/21/09 15:18	1,6020	вм
Arsenic, Dissolved	ND	mg/l	0.0005	1	05/20/09 11:30	05/21/09 15:18	1,6020	вм
Cadmium, Dissolved	ND	mg/l	0.0002	1	05/20/09 11:30	05/21/09 15:18	1,6020	вм
Chromium, Dissolved	ND	mg/l	0.0005	1	05/20/09 11:30	05/21/09 15:18	1,6020	ВМ
Copper, Dissolved	ND	mg/l	0.0020	1	05/20/09 11:30	05/21/09 15:18	1,6020	вм
Lead, Dissolved	ND	mg/l	0.0005	1	05/20/09 11:30	05/21/09 15:18	1,6020	вм
Nickel, Dissolved	ND	mg/l	0.0005	1	05/20/09 11:30	05/21/09 15:18	1,6020	ВМ
Selenium, Dissolved	ND	mg/l	0.001	1	05/20/09 11:30	05/21/09 15:18	1,6020	ВМ
Silver, Dissolved	ND	mg/l	0.0004	1	05/20/09 11:30	05/21/09 15:18	1,6020	ВМ
Zinc, Dissolved	ND	mg/l	0.0100	1	05/20/09 11:30	05/21/09 15:18	1,6020	вм

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - W	estborough Lab for san	iple(s):=0	1⊒Bato	h: WG363	398-1			
Mercury, Dissolved	ND	mg/l	0.0002	. 1	05/21/09 12:05	05/21/09 15:16	3,245.1	EZ

Prep Information

Digestion Method: EPA 245.2

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals	Westborough Lab for san	iple(s): 0	1 Batc	h: WG363	493-1			
Iron, Dissolved	ND	mg/l	0.05	1	05/21/09 12:00	05/21/09 19:56	19,200.7	Al

Prep Information

Digestion Method: EPA 3005A

05260911:40

Project Name:

PERFORMANCE CONTRACTING

Lab Number:

L0906386

Project Number: 60590

Report Date:

05/26/09

Method Blank Analysis Batch Quality Control

Dilution Date Analytical Date **Result Qualifier** Factor Method Analyst **Parameter** Units RDL Prepared Analyzed Total Metals - Westborough Lab for sample(s): 01 Batch WG363594-5 Chromium, Total ND 0.0005 05/22/09 15:07 1,6020 вм mg/l 05/22/09 08:45

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name:

PERFORMANCE CONTRACTING

Project Number: 60590

Lab Number:

L0906386

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals Westborough Lab	Associated sample(s) 01	Batch; WG363221-2			
Antimony, Dissolved	99		80-120		
Arsenic, Dissolved	97	.	80-120	-	
Cadmium, Dissolved	109	-	80-120	-	
Chromium, Dissolved	105	-	80-120	-	
Copper, Dissolved	108		80-120	-	
Lead, Dissolved	103	-	80-120	-	
Nickel, Dissolved	105	•	80-120	-	
Selenium, Dissolved	99		80-120	-	
Silver, Dissolved	100	-	80-120	-	·
Zinc, Dissolved	111	-	80-120	-	
Dissolved Metals - Westborough Lab	Associated sample(s): 01	Batch: WG363398-2			
Mercury, Dissolved	104	-		-	
Dissolved Metals - Westborough Lab	Associated sample(s): 01	Batch: WG363433-2			
Iron, Dissolved	110	<u>-</u>		<u>-</u>	
Fotal Metals - Westborough Lab. Ass	ociated sample(s); 01 Bat	ch: WG363594-6			
Chromium, Total	94	-	80-120	-	

Matrix Spike Analysis Batch Quality Control

Project Name:

PERFORMANCE CONTRACTING

Project Number:

60590

Lab Number:

L0906386

Report Date:

Parameter	Native Sample	MS Added_	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Dissolved Metals - Westbord	ughiLab Associat	ed sample(s):	01 OC Bato	h ID: WG3632	21-4 QC Sai	mple: L0906380	5-01 Client II): GRO	UNDWATER
Antimony, Dissolved	ND	0.5	0.4951	99	-		80-120	-	20
Arsenic, Dissolved	0.0019	0.12	0.1285	105	- 101	 -	80-120	· -	20
Cadmium, Dissolved	ND	0.051	0.0546	107	-	· · ·	80-120	-	20
Chromium, Dissolved	ND	0.2	0.2127	106		-	80-120	-	20
Copper, Dissolved	ND	0.25	0.2691	108		-	80-120	-	20
Lead, Dissolved	0.0006	0.51	0.5400	106	•	- · · · · · · · · · · · · · · · · · · ·	80-120	-	20
Nickel, Dissolved	0,003	0.5	0.5301	105	-	•	80-120	-	20
Selenium, Dissolved	ND	0.12	0.124	103	-	-	80-120	-	20
Silver, Dissolved	ND	0.05	0.0496	99	-	-	80-120	-	20
Zinc, Dissolved	0.0121	0.5	0.5571	(09	- 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	80-120	-	20
Dissolved Metals - Westborn	ough Lab Associa	ted sample(s):	01 QC Bate	ch ID: WG3633	98-4 - QC Sa	mple: L090638	6-01 Client I	D: GRO	UNDWATER
Mercury, Dissolved	ND	0.001	0.0010	99		-		-	
Dissolved Metals - Westborn	ough Lab Associa	ted sample(s):	01 - QC Bat	ch ID: WG3634	33-4 QC Sa	imple: L090638	6-01 Client I	D: GRO	UNDWATER
Iron, Dissolved	4.0	1	5.4	140		-			
Total Metals - Westborough	Lab Associated s	ample(s)::01	·QC Batch ID	i: WG363594-8	QC Sample	e: L0906386-01	Client ID: C	ROUND	WATER
Chromium, Total	0.0039	0.2	0.2103	103	- -	.	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: PERFORMANCE CONTRACTING

Project Number: 60590

Lab Number:

L0906386

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Dissolved Metals - Westborough Lab Associated samp	ole(s): 01 QC Batch ID): WG363221-3 QC Sam	ple: L09063	886-01 Client ID: GR	OUNDWATER
Antimony, Dissolved	ND	ND	mg/l	NG	20
Arsenic, Dissolved	0.0019	0.0020	mg/l		20
Cadmium, Dissolved	ND	ND	mg/l	NS III	20
Chromium, Dissolved	ND	ND	mg/l	.N ©	20
Copper, Dissolved	ND	ND	mg/l	in NC	20
Lead, Dissolved	0.0006	0.0006	mg/l		20
Nickel, Dissolved	0.003	0.0032	mg/l	6	20
Selenium, Dissolved	ND	ND	mg/l	NC	20
Silver, Dissolved	ND	ND	mg/l	NC	20
Zinc, Dissolved	0.0121	0.0125	mg/l	3	20
Dissolved Metals - Westborough Lab Associated sam	ple(s): 01 QC Batch II	D: WG363398-3 QC San	nple:::L0906	386-01 Client D: GR	OUNDWATER
Mercury, Dissolved	ND	ND	mg/l	NC.	
Dissolved Metals - Westborough Lab Associated sam	ple(s): 01 QC Batch II); WG363433-3 QC San	nple: L0906	386-01 Client ID: GF	OUNDWATER
Iron, Dissolved	4.0	4.0	mg/l	0	
Total Metals - Westborough Lab. Associated sample(s): 01 QC Batch ID: W	/G363594-7 QC Sample:	L0906386-	Di Client ID: GROUN	IDWATER
Chromium, Total	0.0039	0.0039	mg/l	O O	20

INORGANICS & MISCELLANEOUS

05260911:40

Project Name:

PERFORMANCE CONTRACTING

Lab Number:

L0906386

Project Number: 60590

Report Date:

05/26/09

SAMPLE RESULTS

Lab ID:

L0906386-01

Client ID:

GROUNDWATER

Sample Location: 225 MAIN STREET, NORTHBRIDGE

Matrix:

Water

Date Collected:

05/19/09 16:00

Date Received:

05/19/09

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lal	0	AND THE STATE OF T		kin butuke, edelier 1651 1887 - Alberta II. 1888 - Alberta III.	Colors (Section 1997)			
Solids, Total Suspended	62		mg/l	5.0	1	<u>-</u>	05/20/09 14:35	30,2540D	DW
Cyanide, Total	ND		mg/l	0.005	1	05/20/09 14:35	05/20/09 18:48	30,4500CN-CE	DD
Chlorine, Total Residual	ND		mg/l	0.02	1	-	05/20/09 00:01	30,4500CL-D	JO
TPH	ND		mg/l	4.40	1.1	05/19/09 20:00	05/20/09 21:45	74,1664A	JO
Phenolics, Total	ND		mg/l	0.03	1	-	05/20/09 17:31	4,420.1	TH
Chromium, Hexavalent	ND		mg/l	0.010	1	05/20/09 01:00	05/20/09 01:00	30,3500CR-D	JT
General Chemistry				Anna a referencia de la rese. Por la referencia de la ref		and the state of t	en e		
Trivalent Chromium	ND		mg/l	0.01	1	-	05/22/09 15:00	30,3500-Cr	ED

Project Name:

PERFORMANCE CONTRACTING

Lab Number:

L0906386

Project Number: 60590

Report Date:

05/26/09

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab for sam	ple(s):=01	Batch	WG3630	88-2	And the second s		
ТРН	ND	mg/l	4.00	1	05/19/09 20:00	05/20/09 21:45	74,1664A	JO
General Chemistry - Wes	stborough Lab for sam	ole(s) 01	Batch:	WG3631	15-2			a) we have to have pay your
Chlorine, Total Residual	ND	mg/l	0.02	1	-	05/20/09 00:01	30,4500CL-D	JO
General Chemistry - Wes	stborough Lab ifor sam	ole(s): 01	Batch:	WG3631	19=1			
Chromium, Hexavalent	ND	mg/l	0.010	1	05/20/09 01:00	05/20/09 01:00	30,3500CR-D	JT
General Chemistry - Wes	stborough Lab_for samp	ole(s): 01	Batch:	=WG3631	65-1 1			
Solids, Total Suspended	ND	mg/l	5.0	1		05/20/09 14:35	30,2540D	DW
General Chemistry - Wes	stborough Lab for samp	ole(s):=01	Batch:	WG36320	07:1			
Cyanide, Total	ND	mg/l	0.005	1	05/20/09 14:35	05/20/09 18:37	30,4500CN-CE	DD
General Chemistry - Wes	stberough Lab for samp	ole(s):: 01	-Batch:	-WG3632	584		AND COMMON TO THE PARTY OF THE	
Phenolics, Total	ND	mg/l	0.03	1	•	05/20/09 17:25	4,420.1	TH

Lab Control Sample Analysis Batch Quality Control

Project Name:

PERFORMANCE CONTRACTING

Project Number: 60590

EIG ORMAGOE CONTROLOTIO

Lab Number:

L0906386

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s); 01	Batch: WG363088-1			
TPH	85	<u></u>	64-132		34
General Chemistry - Westborough Lab	Associated sample(s); 01	Batch: WG3631/15-1			
Chlorine, Total Residual	93				
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG363119-2			
Chromium, Hexavalent	102	-	85-115	-	20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG363207-2			
Cyanide, Total	94	-	80-120	-	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG363258-2			
Phenolics, Total	99	-	82-111	-	12

Matrix Spike Analysis Batch Quality Control

Project Name:

PERFORMANCE CONTRACTING

Project Number:

60590

Lab Number:

L0906386

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
General Chemistry - Westbo	rough Lab Associa	ated sample(s): 01 OCB	itch ID: WG36	3088-3 QC S	iample: L09063	22-01 Client	id: Ms:	Sample
TPH	ND	22.7	ND	87	-		64-132	-	34
General Chemistry - Westbo	rough Lab Associ	ated sample(s): 01 QC Ba	atch ID: WG36	3119-4 QC S	ample: L09063	86-01 Clien	ID: GRO	DUNDWATER
Chromium, Hexavalent	ND	0.1	0,099	99	-		85-115		20
General Chemistry - Westbo	rough Lab Associ	ated sample(s): 01 QC Ba	atch ID: WG36	3207-4 QC S	Sample: L09061	89-02 Clien	tID: MS	Sample
Cyanide, Total	ND	0.2	0.187	94	### -	<u></u>	80-120	_	30
General Chemistry - Westbo	rough Lab Associ	ated sample(s): 01 QC Ba	atch ID: WG36	3258-3 QC S	Sample: L09063	22-01 Clien	tid: MS	Sample
Phenolics, Total	ND	0.8	0.80	100	169er 1886	_	77-124	P	12

Lab Duplicate Analysis Batch Quality Control

Project Name:

PERFORMANCE CONTRACTING

Project Number: 60590

Lab Number:

L0906386

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
General Chemistry - Westborough Lab. Associated sam	ple(s): 01 QC Batch	ID: WG363088-4 QC Sa	mple: L090	6322-02 Client ID: D	UP Sample
ТРН	ND	ND	mg/l	NE REPORTED IN COLUMN TO THE REPORT OF THE PERSON OF THE P	34
General Chemistry - Westborough Lab Associated san	ple(s): 01 QC Batch	ID: WG363115-3 QC Sa	mple: I1090	6386-01 Client ID: G	ROUNDWATER
Chlorine, Total Residual	ND	ND	mg/l	ŊĊ	
General Chemistry - Westborough Lab, Associated san	ple(s): 01 - QC Batch	ID: WG363119-3 OC Sa	mple: 1.090	6386-01 Client ID: G	ROUNDWATER
Chromium, Hexavalent	ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab Associated san	iple(s): 01 QC Batch	ID: WG363165-2 QC Sa	imple: L090	6390-01 Client ID: D	UP Sample
Solids, Total Suspended	140	150	mg/l		32
General Chemistry - Westborough Lab Associated san	nple(s): 01 QC Batch	ID: WG363207-3 QC Sa	ımple: L090	6189-02 Client ID: D	UR Sample
Cyanide, Total	ND	ND	mg/l	NC	30
General Chemistry - Westborough Lab Associated sar	nple(s): 01 GC Batch	ID: WG363258-4 QC Sa	imple: L090	6322-02 Client ID: D	UP Sample
Phenolics, Total	0.14	0.15	mg/l		12

Project Name: PERFORMANCE CONTRACTING

Project Number: 60590

Lab Number: L0906386 Report Date: 05/26/09

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler

Custody Seal

Α

Absent

	Cont	tainer	Inform	nation
--	------	--------	--------	--------

Container ID	Container Type	Cooler	рН	Temp	Pres	Seal	Analysis
L0906386-01A	Vial Na2S2O3 preserved	Α	N/A	10.4	Υ	Absent	504(14)
L0906386-01B	Vial Na2S2O3 preserved	Α	N/A	10.4	Υ	Absent	504(14)
L0906386-01C	Vial HCl preserved	Α	N/A	10.4	Υ	Absent	8260(14)
L0906386-01D	Vial HCl preserved	Α	N/A	10.4	Υ	Absent	8260(14)
L0906386-01E	Amber 1000ml unpreserved	Α	7	10.4	Υ	Absent	8270TCL(7),8270TCL-SIM(7)
L0906386-01F	Amber 1000ml unpreserved	Α	7	10.4	Υ	Absent	8270TCL(7),8270TCL-SIM(7)
L0906386-01G	Plastic 1000ml unpreserved	Α	7	10.4	Υ	Absent	TSS-2540(7)
L0906386-01H	Plastic 1000ml unpreserved	А	7	10.4	Y	Absent	SPECWC(),CR- 6020T(180),HEXCR-3500(1),TRC- 4500(1)
L0906386-011	Amber 1000ml H2SQ4 preserved	Α	<2	10.4	Υ	Absent	TPHENOL-420(28)
L0906386-01J	Amber 1000ml H2SO4 preserved	Α	<2	10.4	Y	Absent	TPHENOL-420(28)
L0906386-01K	Amber 1000ml HCl preserved	Α	<2	10.4	Υ	Absent	TPH-1664(28)
L0906386-01L	Amber 1000ml HCl preserved	Α	<2	10.4	Υ	Absent	TPH-1664(28)
L0906386-01M	Amber 1000ml Na2S2O3	Α	7	10.4	Υ	Absent	PCB-608(7)
L0906386-01N	Amber 1000ml Na2S2O3	Α	7	10.4	Y	Absent	PCB-608(7)
L0906386-01O	Plastic 250ml NaOH preserved	Α	>12	10.4	Υ	Absent	TCN-4500(14)
L0906386-01P	Plastic 500ml unpreserved	Α	7	10.4	Υ	Absent	-
L0906386-01X	Plastic 500ml HNO3 preserved spl	Α	<2	10.4	Y	Absent	CU-6020S(180),FE-RI(180),SE-6020S(180),ZN-6020S(180),CR-6020S(180),NH-6020S(180),PB-6020S(180),AS-6020S(180),HG-R(28),SB-6020S(180),CD-6020S(180)
L0906386-01Y	Plastic 250ml HNO3 preserved spl	Α	<2	10.4	Υ	Absent	-
L0906386-01Z	Plastic 250ml HNO3 preserved spl	Α	<2	10.4	Υ	Absent	CR-6020T(180)
L0906386-02A	Vial Na2S2O3 preserved	Α	N/A	10.4	Υ	Absent	HOLD(14)
L0906386-02B	Vial HCI preserved	Α	N/A	10.4	Υ	Absent	HOLD(14)

Project Name:

PERFORMANCE CONTRACTING

Lab Number:

L0906386

Project Number:

60590

Report Date:

05/26/09

GLOSSARY

Acronyms

EPA

· Environmental Protection Agency.

LCS

· Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD

· Laboratory Control Sample Duplicate: Refer to LCS.

MS

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD

· Matrix Spike Sample Duplicate: Refer to MS.

NA

· Not Applicable.

NC

 Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

ND

· Not detected at the reported detection limit for the sample.

NI

· Not Ignitable.

RDL

Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific
concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where
applicable.

RPD

Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- * The batch duplicate RPD exceeds the acceptance criteria. This flag is not applicable when the sample concentrations are less than 5x the RDL. (Metals only.)
- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E · Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- N The matrix spike recovery exceeds the acceptance criteria. This flag is not applicable when the sample concentration is greater than 4x the spike added. (Metals only.)
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- R Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

Report Format:

Data Usability Report

Project Name:

PERFORMANCE CONTRACTING

Lab Number:

L0906386

Project Number:

60590

Report Date:

05/26/09

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IIIA, 1997.
- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111, May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- 5 Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- 14 Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element 19 Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 30 Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF, 18th Edition, 1992.
- 74 Method 1664, Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised February 18, 2009 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum. Nickel. Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate, Organic Parameters: Haloacetic Acids, Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB).) Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Calcium Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.) Solid Waste/Soil (Inorganic Parameters: Lead in Paint, pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), Reactivity. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenois), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: MA0086.

Drinking Water (Inorganic Parameters: SM9215B, 9221E, 9222B, 9222D, 9223B, EPA 150.1, 180.1, 300.0, 353.2, SM2130B, 2320B, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B,4500NO3-F, EPA 200.7, EPA 200.8, 245.1. Organic Parameters: 504.1, 524.2, SM 6251B.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, Lachat 10-107-06-1-B, SM2320B, 2340B, 2510B, 2540C, 2540D, 426C, 4500Cl-D, 4500Cl-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NH3-H, 4500NO3-F, 4500P-B.5, 4500P-E, 5210B, 5220D, 5310C, EPA 200.7, 200.8, 245.1. Organic Parameters: 608, 624.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water

Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl)

(EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Nitrite-N, Fluoride, Sulfate)

353.2 for: Nitrate-N, Nitrite-N; SM4500NO3-F, 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C, EPA 150.1, SM4500H-B.

Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics)

(504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), SM6251B, 314.0.

Non-Potable Water

Inorganic Parameters:, (EPA 200.8 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn) (EPA 200.7 for: Al,Sb,As,Be,Cd,Cr,Co,Cu,Fe,Pb,Mn,Mo,Ni,Se,Ag,Sr,Tl,Ti,V,Zn,Ca,Mg,Na,K) 245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2540B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Nitrate-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-B,C-Titr, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CN-CE, 2540D, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1 Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics) (608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCB-Water) 600/4-81-045-PCB-Oil

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water

Microbiology Parameters: SM9215B; MF-SM9222B; ENZ. SUB. SM9223; EC-SM9221E; MF-SM9222D; ENZ. SUB. SM9223;

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307.

Drinking Water (Inorganic Parameters: SM6215B, 9222B, 9223B Colilert, EPA 200.7, 200.8, 245.2, 110.2, 120.1, 150.1, 300.0, 325.2, 314.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 331.0. Organic Parameters: 504.1, 524.2, SM6251B.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 150.1, 300.0, 305.1, 310.1, 325.2, 340.2, 350.1, 350.2, 351.1, 353.2, 354.1, 365.2, 375.4, 376.2, 405.1, 415.1, 420.1, 425.1, 1664A, SW-846 9010, 9030, 9040B, EPA 160.1, 160.2, 160.3, SM426C, SM2310B, 2540B, 2540D, 4500H+B, 4500NH3-H, 4500NH3-E, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 2320B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-117-07-1-B, LACHAT 10-107-06-1-B, LACHAT 10-107-04-1-C, LACHAT 10-107-04-1-J, LACHAT 10-117-07-1-A, SM4500CL-E, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. Organic Parameters: SW-846 3005A, 3015A, 3510C, 5030B, 8021B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6010B, 7196A, 7471A, 7.3.3.2, 7.3.4.2, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040, 9045C, 9050C, 1311, 3005A, 3050B, 3051A. Organic Parameters: SW-846 3540C, 3545, 3580A, 5030B, 5035, 8021B, 8260B, 8270C, 8330, 8151A, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935.

Drinking Water (<u>Inorganic Parameters</u>: SM9222B, 9221E, 9223B, 9215B, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 2540C, 2320B, 314.0, 331.0, 110.2, SM2120B, 2510B, 5310C, EPA 150.1, SM4500H-B, EPA 200.8, 245.2, <u>Organic Parameters</u>: 504.1, SM6251B, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.1, SM5220D, 4500Cl-D, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, SM9221CE, 9222D, 9221B, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, EPA 350.2/.1, SM5210B, SW-846 3015, 6020, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, EPA 245.1, 245.2, SW-846 9040B, 3005A, EPA 6010B, 7196A, SW-846 9010B, 9030B. Organic Parameters: SW-846 8260B, 8270C, 3510C, EPA 608, 624, 625, SW-846 5030B, 8021B, 8081A, 8082, 8151A, 8330.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 9040B, 3005A, 6010B, 7196A, 5030B, 9010B, 9030B, 1030, 1311, 3050B, 3051, 7471A, 9014, 9012A, 9045C, 9050A, 9065. Organic Parameters: SW-846 8021B, 8081A, 8082, 8151A, 8330, 8260B, 8270C, 1311, 3540C, 3545, 3550B, 3580A, 5035L, 5035H.)

New York Department of Health Certificate/Lab ID: 11148.

Drinking Water (Inorganic Parameters: SM9223B, 9222B, 8215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 314.0, 331.0, SM2320B, EPA 300.0, 325.2, 110.2, SM2120B, 4500CN-E, 4500F-C, EPA 150.1, SM4500H-B, 4500NO3-F, 2540C, EPA 120.1, SM 2510B. Organic Parameters: EPA 524.2, 504.1, SM6251B.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, EPA 405.1, SM5210B, EPA 410.4, SM5220D, EPA 305.1, SM2310B-4a, EPA 310.1, SM2320B, EPA 200.7, 300.0, 325.2, LACHAT 10-117-07-1A or B, SM4500Cl-E, EPA 340.2, SM4500F-C, EPA 375.4, SM15 426C, EPA 350.1, 350.2, LACHAT 10-107-06-1-B, SM4500NH3-H, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-041-C, SM4500-NO30F, EPA 354.1, SM4500-NO2-B, EPA 365.2, SM4500P-E, EPA 160.3, SM2540B, EPA 160.1, SM2540C, EPA 160.2, SM2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, S\M3500Cr-D, EPA 245.1, 245.2, 7470A, 110.2, SM2120B, 335.2, LACHAT 10-204-00-1-A, EPA 150.1, 9040B, SM4500-HB, EPA 1664A, EPA 415.1, SM5310C, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, EPA 376.2, SM4500S-D, EPA 425.1, SM5540C, EPA 3005A, 3015. Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, 8021B, EPA 3510C, 5030B, 9010B, 9030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 9040B, 9045C, 1010, 1030, SW-846 Ch 7 Sec 7.3, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 3005A, 3050B, 3051, 9010B, 9030B. Organic Parameters: EPA 8260B, 8270C, 8081A, 8151A, 8330, 8082, 8021B, 3540C, 3545, 3580, 5030B, 5035.)

Analytical Services Protocol: CLP Volatile Organics, CLP Inorganics, CLP PCB/Pesticides.

Rhode Island Department of Health Certificate/Lab ID: LAO00065.

Refer to MA-DEP Certificate for Potable and Non-Potable Water.

Refer to NY-DOH Certificate for Potable and Non-Potable Water.

Pennsylvania Department of Environmental Protection Certificate/Lab ID: 68-03671. Registered Laboratory.

PHIA	CHAI	N OF CU	STOD	Y P/	AGE/	of	Date I	tec'd in L	ab:	5 I	9 09		ALPI	4AJob#: LØ906396
WESTBORO, MA TEL: 508-898-9220 FAX: 508-898-9193	MANSFIELD, MA TEL: 508-822-9300 FAX: 508-822-3288		Information lame: Perham		Construct		Repo		mation -		liverab	ies		ng Information ne as Client info PO#:
Client Information		Project L	ocation: 335	May	sheet No	the let	X AL		□ Add	l'I Delive				
Client: Trumuira	k Environment	/ Project #	6059	0				atory Re Fed <i>Prog</i>	quireme	ents/Rep	oort Lin Criteria	nits		
Address: 6/ Imen			lanager:///	Brich	er		MA				Vincina			
Somervilla	c,mA	ALPHA					MAN	CP PRE	SUMPTI	VE CER	TAINT	/ C	T REA	SONABLE CONFIDENCE PROTO-
Phone: 800 - 9	66-9282	Turn-/	round Time		. *			s 🗆 No		CP Analy			,	? Protocols) Required?
Fax: Email: mbriche.	C Triumurate	Standa	1/ 1		confirmed if pre-ap			7	/ /	/ NOF (N	/ /	/ Con		
These samples have	been previously analyze ecific Requireme	ed by Alpha	etection Lim		Time: 5:	wpm .	ANALYSIS		//	//	'	/ /	///	SAMPLE HANDLING Fittration (m)
must meet	+ all effuent 74-313-90	t detection	limits		oVS	i	S O. A.R.			/ / /	//	//	//.	☐ Done ☐ Not needed ☐ Lab to do Prèservation ☐ Lab to do
ALPHA Lab ID (Lab Use Only)	Samp	ole ID	Collect Date	tion Time	Sample Matrix	Sampler's Initials	\ 3 \	' / ,	///	//	//	/ /	//	(Please specify below) Sample Specific Comments
56386.	Groundwater	1	5/19/07	1.00	600	JFB	×							
	arans . India hampiyyaya (Mayar 1818 File	· · · · · · · · · · · · · · · · · · ·										 		
			<u> </u>		-	ļ	-				-			
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						-		?	<u>_</u>
					 		<u> </u>						200	
													2	- SEE
							-					1	27.	
									_					
		A THE STREET OF THE STREET, TH			 	-		<u> </u>				_		
				ſ		elens T								
	R QUESTIONS ABOV	EĮ				ainer Type reservative	++			 			\vdash	Please print clearly, legibly and con pletely. Samples can not be logger in and turnaround time clock will no
MA MCP of		Reling	uished By		Da	te/Time	160	/	ceived By		5/19/		7:05	atart until any ambiguities are resol All samples submitted are subject t Alpha's Terms and Conditions.
FORM NO: 01-01 (rev. 14-00	CT-0 7)	4				7 7								See reverse side.